رنگ آمیزی مکان یاب گراف ها

پایان نامه
چکیده

فرض کنید ‎$c$‎‏ یک ‎$k$-‎رنگ آمیزی معتبر از گراف همبند ‎$g$‎‏ با کلاس های رنگی ‏ ‎$v_1$‎‏‏، ‎$v_2$‎‏‏، ‎$ldots$‎‏‏، ‎$v_k$‎ باشد.‏ ‎$pi:=(v_1,v_2,...,v_k)$‎ را افراز مرتب حاصل از این رنگ آمیزی در نظر بگیرید.‎ کد رنگی رأس ‎$vin v(g)$‎‏‏ یک ‎$k$‎‏-تائی مرتب است که به صورت زیر تعریف می شود vspace*{3mm}‎‎ $$‎c_{{}_pi}(v)‎:=(d(v,v_1),d(v,v_2),ldots,d(v,v_k)).$$‎‏ اگر رئوس متمایز ‎$g$‎‏ کدهای رنگی متمایز داشته باشند‏، آن گاه ‎$c$‎‏ یک ‎‎‏ ‎$k‎$‎‎-رنگ آمیزی مکان یاب‎‏ ‎ نامیده می شود. کوچک ترین عدد صحیح ‎$k$‎‏ با این خاصیت را ‏ عدد رنگی مکان یاب‏‏ ‎‎$‎g‎$‎، ‎‎‎$‎cchi_{{}_l}(g)‎$‎‎‏‏،‎‎‎‎ می نامند. در این رساله ‎‏ عدد رنگی مکان یاب ‏ را برای گراف های کنسر‏، حاصل ضرب دکارتی‏ گراف ها، و الحاق گراف ها مورد مطالعه و بررسی ‏ قرار می دهیم. ‎ ابتدا‏ ثابت می کنیم که برای هر ‎‎$‎ngeq5‎$‎ مقدار دقیق عدد رنگی مکان یاب ‎$kg(n,2)$‎ برابر ‎$n-1$‎ است. ‏ در حالت ‎$kgeq 3$‎‏ نشان می دهیم که اگر ‎$ngeq k^2$‎‏، آن گاه عدد رنگی مکان یاب ‎‎$‎kg(n,k)‎$‎‏ حداکثر ‎$n-1$‎ است. ‎‏‏سپس‏، با ارائه کران هایی برای عدد رنگی مکان یاب گراف های فرد‏، نشان می دهیم که فاصله ی بین عدد رنگی و عدد رنگی مکان یاب گراف های فرد را به هر میزان دل خواهی می توان بزرگ کرد. هم چنین‏، عدد رنگی مکان یاب حاصل ضرب دکارتی دو مسیر‏ و حاصل ضرب دکارتی یک مسیر با یک گراف کامل را به طور دقیق محاسبه می کنیم. عدد رنگی مکان یاب حاصل ضرب دکارتی دو گراف کامل را نیز در برخی از حالت ها مشخص‏، و برای بقیه ی حالت ها حدس هایی ارائه می کنیم. برای بررسی عدد رنگی مکان یاب الحاق گراف ها‏، یک پارامتر جدید تعریف می کنیم که ارتباط بسیار نزدیکی با عدد رنگی مکان یاب دارد. سپس‏، با استفاده از این پارامتر جدید‏ مقدار دقیق عدد رنگی مکان یاب الحاق مسیرها‏، دورها‏، و گراف های چندبخشی کامل را به دست می آوریم.‏

منابع مشابه

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

رنگ آمیزی پویای گراف ها

یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...

15 صفحه اول

رنگ آمیزی وقوع گراف ها

فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...

15 صفحه اول

رنگ آمیزی همیلتونی گراف ها

برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(...

15 صفحه اول

رنگ آمیزی کامل گراف ها

در این رساله به بررسی گراف های تمام رنگ پذیر و خصوصیات آن ها می پرازیم. در بعضی از گراف های خاص درستی حدس رنگ آمیزی کلی را نشان می دهیم و کران های بالایی برای عدد رنگی کلی مطرح می کنیم. مبحث اصلی مورد مطالعه در این رساله، بررسی گراف های یکتا رنگ پذیر کلی می باشد. حدس مهمی که در این زمینه مطرح می شود دلالت بر این دارد که تنها گراف های تهی، مسیرها و دورهای از مرتبه ی 3k، k یک عدد طبیعی است، در رد...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023