شاخص نارومی-کاتایامای گراف ها و محاسبه ی آن در گراف های فولرنی

پایان نامه
چکیده

در این پایان نامه هدف معرفی شاخص جدیدی به نام نارومی-کاتایاما و ارائه ی کاربردهای آن می باشد. یکی از مهم ترین آن ها یافتن کران هایی برای پیچیدگی در گراف است. سپس کران هایی برای این شاخص با استفاده از مفهوم پوشش در گراف می یابیم. همچنین مقادیر فرینه ی این شاخص را در کلاس های مختلفی از گراف ها همچون گراف های همبند، درخت ها و درخت های شیمیایی بیان کرده و مقدار این شاخص را در گراف های مولکولی فولرن ها، نانولوله ها و نانوستاره ها محاسبه می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دورهای برداشتنی از گراف ها و دی گراف ها

در این مقاله دورهای برداشتنی بدین معنی تعریف می شوند: اگر f یک کلاس از گراف ها (دی گراف ها) باشد که در خاصیت معینی صدق کند ، g in f دور c در g با گره برداشتنی است هرگاه g-v(c) in f دورهای با گره برداشتنی از گراف ها ی اویلری مطالعه می گردند. ما دورهای با اضلاع برداشتنی از گراف های منظم (دی گرافها) را نیز مطالعه می کنیم.

متن کامل

محاسبه عدد کلار گراف های فولرنی

یک جورسازی از گراف g، مجموعه ای از یال های دو به دو غیر مجاور m از g است و یک جورسازی تام (یا ساختار ککوله)، جورسازی است که تمام رئوس g را می پوشاند. یک دور از گراف g را m- متناوب گویند هرگاه یال های آن به طور متناوب در m و em باشند. فرض کنید f_n یک گراف فولرنی n رأسی باشد. مجموعه h از شش ضلعی های غیر مجاور f_n را یک الگو شش ضلعی گویند، هرگاه f_n یک جورسازی تام m را به گونه ای داشته باشد که هر...

شاخص اصلاح شده سگد گراف های فولرنی

یک شاخص توپولوژیک برای گرافg ‎، ثابت عددی است که کمیتی فیزیکی یا شیمیایی را توصیف می کند. این اعداد در شیمی نظری به منظور کدگذاری مولکول ها برای طراحی اجسام شیمیایی با خواص فیزیکی-شیمیایی داده شده و فعالیتهای زیستی و داروشناسی به کار می روند. شاخص سگد در سال ‎1994‎ توسط ایوان گوتمن به عنوان تعمیمی از شاخص وینر تعریف شد. کاربردهای این شاخص در مدل سازی ساختارهای نانو و همبستگی آن با برخی شاخص های...

15 صفحه اول

برخی ویژگی های جبری و متریک گراف ها و کاربرد آن ها در گراف های فولرنی و نانوستاره ها

در این رساله ‎‎ابتدا با استفاده از یک روش ماتریسی به بررسی تقابل عدد وینر گراف ها و شبکه ها بر حسب برخی ویژگی های متریک گراف ها پرداخته شده است. سپس نسخه یالی عدد وینر گراف ها را مورد مطالعه قرار می گیرد. پس از آن‏، به معرفی نگاشت های ایزومتریک بر پایه رابطه جوکویچ-وینکلر پرداخته، بر اساس این رابطه، روش برشی در گراف ها را توضیح داده و سپس روش برشی تعمیم یافته را بررسی می کنیم. این سه روش الگوری...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023