بررسی شاخص کریشهف برای گراف های ترکیبی دوری و کیلی

پایان نامه
چکیده

برای بررسی برخی از خواص مولکول ها، نیازمند استفاده از زبان ریاضی هستیم، بعنوان نمونه وقتی ساختار مولکول ها را بوسیله فضای متریک توپولوژی بیان می کنیم از توابع فاصله کمک می گیریم. بر اساس این توابع فاصله، شاخص های متعددی بوجود می آیند یکی از شاخص های معروف، شاخص وینر است که بر اساس فاصله مسیری است. به علت نقصی که در این تابع فاصله وجود دارد، تابع فاصله دیگری که فاصله مقاومتی نام دارد بوجود آمد و بر اساس این تابع فاصله جدید، شاخص کریشهف معرفی شد. در این تحقیق به مقایسه میان شاخص وینر و شاخص کریشهف پرداختیم و همچنین فاصله ی مقاومتی را از تعریف فیزیکی محاسبه کردیم و فرمول های متفاوتی از آن را ارائه دادیم. در ادامه نیز مقادیر ویژه لاپلاسین و شاخص کریشهف برای گراف های ترکیبی و دوری را محاسبه کردیم و مثال های مهم و کاربردی از این گراف ها را مورد بررسی قرار دادیم همچنین به بررسی گراف کیلی که یک گراف جبری است پرداختیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گراف های کیلی روی گروه دوری zn

گراف های کیلی نوعی از گراف های وابسته به یک گروه هستند. اگر این گروه را به بعضی از توابع حسابی مرتبط سازیم گراف کیلی رفتاری همانند یک گراف حسابی خواهد داشت. در این پایان نامه گراف کیلی روی گروه دوری ‎ zn‎ ، از جمله گراف کیلی بخشی و گراف کیلی اویلر و رده دیگری از گراف های حسابی به نام گراف حسابی ‎vn مورد بررسی قرار می گیرند. همچنین نشان می دهیم گراف کیلی بخشی، منتظم، همیلتونی و همبند است. این گر...

گراف های کیلی یکریخت با ضرب های دو گراف کیلی

امروزه نظریه گراف یکی از پربارترین شاخه های ریاضیات و علوم کامپیوتر شده است. دلیل این امر هم کاربرد قابل ملاحظه این شاخه در زمینه های گوناگونی چون علوم نانو، فیزیک، بیولوژی، شیمی، انتقال اطلاعات و به طور کلی بررسی و تجزیه و تحلیل وابستگی اشیاء به یکدیگر است. در این پایان نامه ابتدا به بررسی و معرفی ضرب های بین گراف ها می پردازیم و دو ضرب جدید بین گراف ها با نام های جایگذاری و زیگ-زاگ را معرفی...

برهانی برای قضیه کیلی - همیلتن

در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.

متن کامل

بررسی یکریختی های گراف های کیلی متناهی

مسئله یکریختی برای گراف ها یکی از مسائل اساسی در نظریه گراف است. در این پایان نامه به بررسی این مسئله برای گراف های کیلی و سوگراف های کیلی پرداخت می شود. به ازای گروه های متناهی ? و ?، شرایطی ارائه می شود تا هر گراف کیلی از ? با یک گراف کیلی از ? یکریخت باشد. همچنین نشان داده می شود که هر گراف کیلی از یک گروه مشخص از مرتبه 12 با یک گراف کیلی از گروه دووجهی از مرتبه 12 یکریخت است. به طور مشابه ن...

طیف گراف های کیلی

طیف گراف های کیلیِ ساخته شده از گروه های دوری و گروه های دو وجهی محاسبه و ارتباط گراف های یک ریخت را بررسی شده است. شرایط جدیدی (برای گروه های دوری) بیان تا دو گراف ‏هم طیف، در حد یک ریختی یکدیگر را توصیف کنند. همچنین رده ای جدید از گراف های کیلیِ هم طیف و ‏نایک ریخت، برای گروه های دوریِ مرتبه ‎2^{r}p برای عدد صحیحr>= 2 و عدد اول ‎ p‎ ارائه داده شده است‎.‎ با استفاده از سرشت های تحویل ناپذیر گرو...

بعد متریک گراف های کیلی

در این پایان نامه به یکی از مسائل مهم نظریه گراف بنام بعد متریک پرداخته شده است. در فصل اول یک سری تعاریف مورد نیاز در طول نگارش پایان ناه مطرح شده است. در فصل دوم این پایان نامه ابتدا به بیان تاریخچه ای مختصر راجع به بعد متریک پرداخته شد و پس از آن بعد متریک در گراف ها تعریف شد. در زیربخش های دیگر این فصل بعد متریک چند خانواده از گراف ها نظیر گراف های کامل، دوبخشی کامل، گراف های درخت، مسیر، دو...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023