بررسی عدد احاطه گری منهای تام در خانواده ای از گراف ها

پایان نامه
چکیده

عدد احاطه گری تام در سال 1980 توسط کوکاینی معرفی شد.ریاضیدانان دیگری همچون هنینگ و شان نیز در این زمینه فعالیت کرده اند.در سال های اخیر کارهای زیادی در این زمینه انجام شده است و مفاهیم جدیدی به وجود آمده اند که از آن جمله می توان به عدد احاطه گری علامت دار تام ، عدد احاطه گری منهای تام و عدد k-زیر احاطه گری منهای تام و عدد احاطه گری یالی منهای تام اشاره کرد. عدد احاطه گری منهای تام کاربرد زیادی در زمینه کامپیوتر و مدیریت دارد. در این پایان نامه در فصل اول به بیان تعاریف و قضایای مقدماتی می پردازیم ، در فصل دوم مفهوم عدد احاطه گری منهای تام و قضایای اساسی مربوط به آن را بیان می کنیم . در فصل سوم به بررسی عدد احاطه گری منهای تام در خانواده ای از گراف ها می پردازیم. در فصل چهارم با عدد k-زیر احاطه گر منهای تام و در فصل پنجم با عدد احاطه گری یالی منهای تام آشنا شده و مقدار آن ها را برای خانواده هایی از گراف ها محاسبه می کنیم. کلمات کلیدی: عدد احاطه گری منهای تام ، عدد k-زیراحاطه گری منهای تام ، عدد احاطه گری یالی منهای تام

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عدد احاطه ای مهارشده تام در گراف ها

فرض کنید g یک گراف با مجموعه راس های v و مجموعه یال های e باشد . مجموعه احاطه گر s را یک مجموعه احاطه گر مهار شده می نامند هرگاه هر راس از v-s با راسی از v-s مجاور باشد می نیمم تعداد اعضای یک مجموعه احاطه گر مهار شده گراف g را عدد احاطه ای مهار شده نامند و با (γr (g نمایش می دهند . مجموعه احاطه گر تام s را یک مجموعه احاطه گر تام مهار شده نامند هرگاه هر راسی از v-s با راسی از v-s مجاور باشد . می...

15 صفحه اول

عدد احاطه ای تام همبند بیرونی در گراف ها

فرض کنید g = ( v ; e ) گرافی فاقد راس منفرد است. مجموعه ی d ? v (g) را مجموعه احاطه گر تام گوییم هرگاه d یک مجموعه احاطه گر بوده و زیر گراف القایی g[d] شامل هیچ راس منفردی نباشد. می نیمم کاردینال یک مجموعه احاطه گر تام را عدد احاطه ای تام می نامند. مجموعه d ? v (g) را یک مجموعه احاطه گر همبند بیرونی تام گویند هرگاه d یک مجموعه احاطه گر تام g بوده و زیر گراف القایی توسط g[v ? d] همبند باشد. عدد ...

15 صفحه اول

عدد احاطه گری رومی در گراف ها

احاطه گری رومی اولین بار توسط استوارت و ریول و رزینگ در سال های 1999و2000 معرفی شد و مورد توجه ریاضی دانان زیادی قرار گرفت . عدد احاطه گری رومی کاربرد زیادی در علوم کامپیوتر دارد. در این پایان نامه در فصل اول پس از بیان تعاریف مقدماتی به تعریف احاطه گری رومی و برخی خواص ان پرداخته و سپس عدد احاطه گری رومی را با عدد احاطه گری مقایسه کرده ایم . در فصل دوم به ارائه ماکسیمم و مینیمم برای |v0| و|v1|...

15 صفحه اول

عدد احاطه ای مستقل در گراف ها

فرض کنید (g=(v,e گرافی با مجموعه رئوس v و مجموعه یال های e باشد. مجموعه d از رئوس گراف g، یک مجموعه احاطه گر است، هرگاه هر عضو v-d با رأسی از d، مجاور باشد. می نیمم اندازه یک مجموعه احاطه گر را عدد احاطه ای g گویند و با نماد (γ(g نشان می دهند. مجموعه d از رئوس گراف g، یک مجموعه مستقل است، هرگاه هیچ دو رأسی از d، در g مجاور نباشد. ماکسیمم اندازه یک مجموعه مستقل را عدد استقلال g گویند و با نماد ...

15 صفحه اول

بررسی عدد احاطه ای رنگین کمانی در گراف ها

مجموعه های احاطه گر موضوعی پرکاربرد و گسترده در نظریه ی گراف است که به صورت های گوناگونی تعمیم یافته است و امروزه در سطح وسیعی در دست مطالعه و بررسی است. یکی از انواع این تعمیم ها توابع احاطه گر رنگین کمانی است. تابع ‎$f:v(g) ightarrow p({1‎, ‎2})$‎ را یک تابع احاطه گر ‎2-‎رنگین کمانی روی ‎$g$‎ گویند هرگاه به ازای هر راس ‎$vin v(g)$‎ با ویژگی ‎$f(v)=emptyset$‎ تساوی ‎$igcup_{uin n(...

?-احاطه گری در گراف ها

فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهو...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023