بهبود مدل سلسله مراتبی بازشناسی اشیا مبتنی بر یافته های بیولوژیکی دستگاه بینایی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده فنی و مهندسی
- نویسنده مسعود قدرتی
- استاد راهنما محمد پویان رضا ابراهیم پور
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
انسان به سرعت و به طور موثر می تواند اشیا متفاوت را در صحنه های طبیعی و پیچیده شناسایی کند. این توانایی برجسته الهام بخش بسیاری از مدل های محاسباتی شناسایی اشیا بوده است. بسیاری از این مدل ها سعی به تقلید رفتار این دستگاه تحسین برانگیز دارند. دستگاه بینایی انسان اشیا را در یک سلسله مراتب از چندین مرحله پردازش شناسایی می کند. در طول این مراحل مجموعه ای از ویژگی ها با پیچیدگی فزاینده ای توسط بخش های مختلف دستگاه بینایی استخراج می گردد. ویژگی های ساده تر و ابتدایی مانند میله ها و لبه ها در سطوح اولیه مسیر بینایی پردازش شده و همچنان که در این مسیر بالا می رویم ویژگی های پیچیده تر مورد توجه و پردازش قرار می گیرند. این که چه ویژگی هایی از شی انتخاب می گردند و مورد پردازش قرار می گیرند همیشه مسئله ی مهمی در پردازش اشیا توسط قشر بینایی بوده است. برای پرداختن به این مساله، ما یک مدل سلسله مراتبی، که با یافته های بیولوژیکی سازگار است را گسترش داده و سپس آنرا در آزمایش های متفاوت شناسایی اشیا مورد ارزیابی قرار دادیم. در این مدل، مجموعه ای از بخش های شی، که با نام تکه های تصویر شناخته می شوند، در مراحل میانی استخراج می گردند. این تکه های تصویر برای آموزش در این مدل استفاده می شود و نقش مهمی در شناسایی شی ایفا می کنند. این تکه های تصویر بدون هدف و کورکورانه از مواضع مختلف از یک تصویر انتخاب شده که این موضوع می تواند منجر به استخراج تکه های غیر تبعیض آمیز گردد که در نهایت ممکن است عملکرد مدل را کاهش دهد. در روش پیشنهادی، از الگوریتم تکاملی برای انتخاب مجموعه ای از تکه های تصویر با اطلاعات مفید برای شناسایی اشیا گوناگون استفاده گردید. نتایج نشان می دهد که این تکه ها حاوی اطلاعات بیشتر و مفیدتری نسبت به تکه های معمول که به روش کورکورانه و تصادفی انتخاب می شوند هستند. همچنین نشان داده خواهد شد که قدرت مدل ارایه شده بر روی طیف وسیعی از تصاویر از پایگاه داده های مختلف قابل توجه بوده است. نتایج آزمایش ها نشان می دهد که ویژگی های انتخاب شده به طور کلی بخش های خاصی از تصاویر هدف هستند. این ویژگی های انتخاب شده که بخش هایی از اشیا هدف را ارایه می دهند مجموعه-ای کارآمد برای تشخیص اشیا می باشند. کلمات کلیدی: مدل بازشناسی اشیا، قشر بینایی، مدل سلسله مراتبی، الگوریتم های تکاملی، انتخاب ویژگی.
منابع مشابه
مدل محاسباتی بازشناسی اشیا مبتنی بر زمان با الهام از سامانهی بینایی انسان
یکی از اصلیترین تواناییهای شناختی انسان و جانوران بازشناسی اشیا است. سامانه بینایی انسان به عنوان سامانهای سریع و دقیق میتواند منبع الهام برای ارائه مدلهای محاسباتی بازشناسی اشیا باشد. پژوهشهای پیشین که به بررسی رفتار سامانهی بینایی انسان در بازشناسی اشیا پرداختهاند، بر پردازش طی گامهای زمانی در این سامانه تاکید کردهاند، در حالی که در مدلهای محاسباتی موجود برای بازشناسی اشیا ، چنین ...
متن کاملاستخراج ویژگیها جهت بازشناسی اشیا با الهام از بینایی انسان
در این مقاله سعی شده است تا با الگو برداری از سامانهی بینایی انسان، یک روش مقاوم و تکرارپذیر برای بازشناسی اشیا ارائه شود. یکی از معروفترین مدلهای ارائه شده مبتنی بر بینایی انسان، مدل HMAX میباشد که عملکرد مناسبی در بازشناسی اشیا از خود نشان داده است. اما تفاوتهایی نیز بین این مدل و بینایی انسان وجود دارد، به طوری که رویهی مغز به طور کامل مدل نشده است. از جمله نواقص این مدل میتوان به تک...
متن کاملگزینش ویژگیهای بهینه در مدل بیولوژیکی بازشناسی اشیا با حداکثرکردن اطلاعات متقابل
عملکرد سیستم بینایی انسان در بازشناسی اشیای مختلف، از عملکرد بهترین سیستمهای بینایی ماشین بهتر است. به همین دلیل محققان حوزهی بینایی ماشین و علوم اعصاب همواره به دنبال مدلکردن عملکرد سیستم بینایی انسان جهت استفاده در سیستمهای بینایی ماشین هستند. یکیاز قویترین مدلهای محاسباتی که در این زمینه توسعه یافته مدل HMAX است. این مدل، برپایهی عملکرد سلولهای مغز انسان در گذرگاه بطنی قشر بینایی طر...
متن کاملارائه مدل محاسباتی بازشناسی اشیاء مبتنی بر یافته های زمان پردازش در سیستم بینایی
زمان پردازش نواحی مختلف قشر بینایی مغز انسان ابزاری برای مطالعه لایه های مختلف قشر بینایی، و پی بردن به سلسله مراتب نواحی مختلف مغز است. در چند سال اخیر پارامتر های آماری تصاویر طبیعی و بحث وابستگی زمان پردازش در قشر بینایی مغز به آن ها مورد توجه قرار گرفته است. زمان پاسخ دهی نواحی مختلف مغز به نوع محرکی که آنها را تحریک می کند وابسته است. در این پایان نامه، به بررسی اثر ویژگی های آماری تصاویر ...
15 صفحه اولارائه مدل بازشناسی اشیاء مبتنی بر یافته های زمان پردازش در سیستم بینایی
زمان پردازش نواحی مختلف قشر بینایی مغز انسان ابزاری برای مطالعه لایه های مختلف قشر بینایی، و پی بردن به سلسله مراتب نواحی مختلف مغز است. در چند سال اخیر پارامتر های آماری تصاویر طبیعی و بحث وابستگی زمان پردازش در قشر بینایی مغز به آن ها مورد توجه قرار گرفته است. زمان پاسخ دهی نواحی مختلف مغز به نوع محرکی که آنها را تحریک می کند وابسته است. در این پایان نامه، به بررسی اثر ویژگی های آماری تصاویر ...
روش بهبود یافته تحلیل همبستگی متعارف برای بازشناسی فرکانس پتانسیل برانگیخته بینایی حالت ماندگار
روش تحلیل همبستگی متعارف (CCA)، یکی از پرکاربردترین روشهای بازشناسی فرکانس در سیستمهای واسط مغز-کامپیوتر مبتنی بر پتانسیل برانگیخته بینایی حالت ماندگار (SSVEP) است. اگرچه روش CCA در اغلب موارد با نتایج خوبی همراه است، اما اگر میان فرکانسهای تحریک رابطه هارمونیک برقرار باشد، این روش با چالش مواجه خواهد شد. در این مقاله، روش CCA بهبود یافته پیشنهاد شده است که با اضافه نمودن یک مرحلهی پسپرداز...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده فنی و مهندسی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023