حل عددی برخی مسائل هذلولوی و کاربرد آن در طبیعت
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
- نویسنده سیده سمیه حسینی کیا
- استاد راهنما علی مردان شاهرضایی یداله اردوخانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
هدف اصلی این رساله ، حل مسأله هذلولوی مرتبه دوم خطی : است که در آن ، و توابع معلوم، و و مشتقهایشان توابعی پیوسته از هستند. ، و ضرایب و اعداد مشخص می باشد . تابع در این مسأله مجهول می باشدکه با شش روش عددی ( تفاضلی اسپلاین با سه سطح ، تفاضلی اسپلاین با دو سطح ، نیمه گسسته سازی با دو سطح ، صریح ، ضمنی کرانک ـ نیکلسون و تفاضلی فشرده) تقریبی از آن را به دست می آوریم . در روش تفاضلی اسپلاین با سه سطح ، در راستای مکان ، درونیاب اسپلاین درجه چهارم و در راستای زمان ، گسسته سازی تفاضل متناهی آورده شده است و دقت ازمرتبه دارد . در روش تفاضلی اسپلاین با دو سطح ، در راستای مکان،درونیاب اسپلاین درجه چهارم و درراستای زمان،فرمول ذوزنقه ای تعمیم یافته به کار رفته است و دقت این روش در راستای مکان مرتبه چهارم و با انتخاب پارامتر مناسب دقت در راستای زمان مرتبه سوم می شود . در روش نیمه گسسته سازی با دو سطح ، دو فرمول عددی برای حل مسأله ذکر شده است ، در حالتی که تابعی از و حالتی که شرایط کرانه ای دیریکله همگن باشد . دقت این دو روش در مقایسه با سایر روشهای ذکر شده بالاتر است و مرتبه دقت آن ها و می باشد.در روش صریح برای تمامی مشتق ها، تفاضلات مرکزی را به کار می بریم. در روش ضمنی کرانک ـ نیکلسون برای مشتقات زمانی تفاضلات مرکزی را به کار می بریم و برای مشتق مکانی در نقطه قرار می دهیم و همچنین به جای در نقطه قرار می دهیم . هر دو روش صریح و ضمنی دقت از مرتبه دارند . روش تفاضلی فشرده از مرتبه است و در آن برای مشتقات زمانی و مکانی مرتبه دوم از عملگر تفاضلی فشرده استفاده می کنیم . در این پایان نامه معادله هذلولوی مرتبه دوم غیرخطی : , , , که در آن ، و ثابتهای مثبت و تابعی از است را با شرایط اولیه , , و شرایط کرانه ای دیریکله ، نیومن یا روبین مورد مطالعه قرار می دهیم . در این مسأله مجهول می باشد که ابتدا به روش تفاضل متناهی تقریبی از آن را به دست می آوریم و در روش دیگر با تبدیل معادله به یک معادله انتگرال ـ دیفرانسیل ولترا نوع دوم به حل آن می پردازیم همچنین به کاربرد اینگونه مسائل در طبیعت نیز پرداخته شده است .
منابع مشابه
توزیع هذلولوی تعمیم یافته و کاربرد آن در ریاضیات مالی
در دههی هفتاد مدل بلک شولز نقش عمدهای در قیمتگذاری مشتقات مالی داشت. اما بعدها به دلیل ضعف عمدهی آن، مدلهای متنوع دیگری ارائه شد. خانواده فرایندهای لوی یکی از متداولترین مدلها است که برای قیمتگذاری داراییهای مالی مورد استفاده قرار میگیرد. فرایند هذلولوی تعمیم یافته از جملهی این فرایندها است که مبتنی بر توزیع هذلولوی تعمیم یافته میباشد. در این مقاله ابتدا به معرفی این توزیع میپرداز...
متن کاملحل عددی برخی مسائل مستقیم و معکوس هدایت گرمایی دوبعدی به کمک روش جواب بنیادی
ددر این مقاله یک روش عددی برپایه روش جواب بنیادی برای حل برخی مسائل مستقیم و معکوس هدایت گرمایی دوبعدی به کار گرفته میشود. براساس جواب بنیادی معادله گرما و خواص نظری جوابهای بنیادی شامل استقلال خطی و چگال بودن، با جایگذاری مناسب نقاط منبعی، روش جواب بنیادی برای حل برخی مسائل هدایت گرمایی دوبعدی معرفی میشود. سیستم خطی بدست آمده از روش فوق برای مسائل مستقیم و معکوس، یک سیستم خطی بد حالت بوده و ...
متن کاملارائه مدلی برای حل مسائل برنامهریزی تصادفی چند هدفه با استفاده از تابع عضویت هذلولوی
Since most real-world decision problems, because of incomplete information or the existence of linguistic information in the data are including uncertainties. Stochastic programming and fuzzy programming as two conventional approaches to such issues have been raised. Stochastic programming deals with optimization problems where some or all the parameters are described by stochastic variables. I...
متن کاملکاربرد روش تکرار تغییراتی خی برای حل برخی مسائل هذلولوی معکوس
این پایان نامه به حل برخی مسائل هذلولوی در معادلات موج یک بعدی، دو بعدی و سه بعدی می پردازد. جوابهای عددی با استفاده از روش تکرار تغییراتی به دست می آید. این روش مبنی بر استفاده از ضرایب لاگرانژ برای شناسایی مقادیر بهینه پارامتر در یک تابع است. استفاده از این روش، یک دنباله همگرای سریع را نتیجه می دهد که به جواب دقیق مسأله همگرااست. علاوه بر این، روش تکرار تغییراتی نیازی به گسسته سازی مسأله ندا...
15 صفحه اولتوزیع هذلولوی تعمیم یافته و کاربرد آن در ریاضیات مالی
در دههی هفتاد مدل بلک شولز نقش عمدهای در قیمتگذاری مشتقات مالی داشت. اما بعدها به دلیل ضعف عمدهی آن، مدلهای متنوع دیگری ارائه شد. خانواده فرایندهای لوی یکی از متداولترین مدلها است که برای قیمتگذاری داراییهای مالی مورد استفاده قرار میگیرد. فرایند هذلولوی تعمیم یافته از جملهی این فرایندها است که مبتنی بر توزیع هذلولوی تعمیم یافته میباشد. در این مقاله ابتدا به معرفی این توزیع میپرداز...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023