الگوریتم های اولیه – دوگان نقطه درونی برای مسائل بهینه سازی نیمه معین بر اساس یک تابع هسته ای

پایان نامه
چکیده

در این رساله ما روش های نقطه درونی (ipms) را برای مسائل بهینه سازی نیمه معین (sdo) مطالعه می کنیم. ipms برای مسائل sdo به علت پیچیدگی چند جمله ای و کارایی اجرایی آن ها به وفور مورد مطالعه قرار گرفته اند. sdo به عنوان یک مسئله ی بهینه سازی مخروطی (‍‍‍co)، یک مسئله ی بهینه سازی محدب روی اشتراک یک مجموعه ی آفین و مخروط ماتریس های نیمه معین مثبت می باشد. این رساله شامل پنج فصل می باشد. در فصل 1، ابتدا مسائل (co) را معرفی و سپس مسائل sdo را به عنوان یک نمونه از مسائل co بررسی می کنیم. در فصل 2، یک کلاس جدید از توابع هسته ای را معرفی می کنیم. در فصل 3، ابتدا روش های نقطه درونی شدنی اولیه - دوگان بر اساس این توابع را بررسی و سپس بهترین پیچیدگی دو الگوریتم گام کوتاه و گام بلند برای حل مسائل sdo را ارائه می کنیم. در فصل 4، یک روش نقطه درونی شدنی اولیه - دوگان جدیدی را برای حل مسائل sdo بررسی می کنیم. در فصل 5، ما یک روش نقطه درونی نشدنی (iipm) اولیه - دوگان جدیدی برای حل مسائل sdo بر اساس روش داروی که در فصل 4 ذکر شده است ارائه می دهیم و ثابت می کنیم که پیچیدگی این الگوریتم منطبق با بهترین پیچیدگی شناخته شده برای iipms برای حل مسائل sdo است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوریتم نقطه درونی اولیه-دوگان برای بهینه سازی نیمه معین محدب درجه دو

در این پایان نامه، الگوریتم نقطه درونی اولیه-دوگان جدیدی را برای حل حالت خاصی از مسئله ی بهینه سازی نیمه معین محدب درجه دو، مبتنی بر تابع هسته بیان می کنیم. تابع هسته پارامتری ارائه شده در بدست آوردن جهت های جستجو ی جدید و همچنین اندازه گیری فاصله ی بین نقاط تکرار داده شده از µ-مرکزدر الگوریتم مورد استفاده قرار می گیرد. این خاصیت ها ما را قادر می سازد تا بهترین کران تکرار شناخته شده را برای ال...

الگوریتم های نقطه درونی اولیه -دوگان برای بهینه سازی مخروط مرتبه دوم بر اساس توابع هسته

در این پایان نامه ، الگوریتم های نقطه درونی اولیه – دوگان برای بهینه سازی مخروط مرتبه دوم ، بر پایه توابع هسته متنوع ارائه می شود. و توابع هسته پیچیدگی بهتری را نتیجه می دهند، لذا از اهمیت زیادی برخوردارند. این دسته از توابع هسته ، قبلا" در بهینه سازی خطی بررسی شده است . کران های تکرار برای روش های بهنگام سازی بزرگ و کوچک o(?n log?n)log??n/?? و o(?n)log??n/?? بوده که n عدد مخروط مرتبه دوم در تد...

15 صفحه اول

روش های نقطه درونی اولیه-دوگان برای مسائل برنامه ریزی غیرخطی نیمه معین

مسائل برنامه ریزی غیرخطی نیمه معین، به دلیل اینکه شامل بسیاری از مسائل یهینه سازی می باشند، از اهمیت ویژه ای برخوردار هستند. اما با این وجود، تاکنون مطالعات اندکی در این زمینه صورت گرفته است. در این پایان نامه سعی بر آن شده است که مسائل بهینه سازی غیرخطی نیمه معین مثبت را معرفی کرده، سپس شرایط بهینگی را برای این نوع مسائل به طور کامل بیان کنیم. هدف اصلی از این پایان نامه، استفاده از روش های نقط...

15 صفحه اول

الگوریتم های نقطه درونی برای حل مسائل بهینه سازی نیمه معین محدب مرتبه ی دو.

در این رساله ‏به آنالیز و بررسی مسائل بهینه سازی نیمه معین محدب مرتبه ی دو می پردازیم و الگوریتم های نقطه درونی را برای حل آن ارائه می دهیم. این رساله شامل چهار فصل می باشد. در فصل اول به معرفی مسائل بهینه سازی نیمه معین محدب مرتبه ی دو به عنوان توسیعی از مسائل نیمه معین ‎‏پرداخته‎ و یک روش نقطه درونی اولیه-دوگان بر اساس تابع هسته ای‏، برای حل آن ارائه می دهیم. در فصل دوم توابع هسته ای را معرف...

15 صفحه اول

بررسی پیچیدگی الگوریتم نقطه درونی برای بهینه سازی خطی و نیمه معین بر اساس توابع هسته با جمله مانع مثلثاتی

در این پایان نامه، یک روش نقطه درونی اولیه-دوگان برای بهینه سازی خطی و نیمه معین براساس تابع هسته جدید با جمله مانع مثلثاتی ارائه می شود. نشان می دهیم که کران تکرار برای روش بهنگام سازی کوچک و بهنگام سازی بزرگ به ترتیب عبارتند از o(?n log n/?)‎‎‎ و o(n^(3/4) log??n/??)‎‎‎، که این کران پیچیدگی، بهتر از کران پیچیدگی به دست آمده از تابع هسته ی کلاسیک است.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023