حل عددی معادلات انتگرال فردهلم با استفاده از ترکیب توابع بلاک-پالس و سری تیلور
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم پایه
- نویسنده علی اکبر حسینی
- استاد راهنما فرشید میرزایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
در این پایان نامه هدف اصلی بحث در مورد ترکیب توابع بلاک - پالس با سری تیلور و استفاده از آن برای حل عددی معادلات انتگرال فردهلم خطی می باشد. این پایان نامه شامل چهار فصل می باشد که بصورت زیر مرتب شده است. در فصل اول مقدمه ای کوتاه در مورد معادلات انتگرال و تعاریف لازم آورده شده است. فصل دوم به روش بسط سری تیلور و کاربرد آن برای حل عددی معادلات انتگرال فردهلم خطی اختصاص یافته است. در فصل سوم توابع متعامد بلاک - پالس معرفی شده و خواص آن مورد بررسی قرار گرفته است. در فصل چهارم به معرفی ترکیب توابع بلاک - پالس و سری تیلور، بررسی خواص آن و همچنین استفاده از آن برای حل عددی معادلات انتگرال فردهلم خطی مورد مطالعه قرار گرفته است. در هر فصل چندین مثال عددی نیز برای ارائه کارائی این روش ها ورده شده است.
منابع مشابه
حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین
در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...
متن کاملحل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل
در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم بسل است. نت...
متن کاملتقریبی از جواب معادلات انتگرال- دیفرانسیل فردهلم غیرخطی با تأخیر زمانی با استفاده از روش تیلور
در این مقاله یک روش عددی مناسب برای حل معادلات انتگرال- دیفرانسیل فردهلم غیر خطی با تأخیر زمانی ارائه شده است. روش مبتنی بر بسط تیلور می باشد. این روش معادله انتگرال- دیفرانسیل و شرایط داده شده را به معادله ماتریسی که متناظر با یک دستگاه از معادلات جبری غیر خطی با ضرایب مجهول بسط تیلور می باشد تبدیل می کند، که از حل دستگاه، ضرایب بسط تیلور تابع جواب به دست می آید. سپس با مثال هایی کارایی روش را...
متن کاملبهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملروش مستقیم حل عددی معادلهٔ انتگرو- دیفرانسیل ولترا با استفاده از توابع بلاک- پالس
در این مقاله روشی مستقیم برای حل عددی معادلات خطی انتگرو- دیفرانسیل ولترا ارائه می شود. این روش براساس توابع بلاک-پالس و ماتریس عملیاتی آن ها است و معادله ای انتگرو-دیفرانسیل را به یک دستگاه معادلات جبری پایین مثلثی تبدیل می کند که به سادگی می توان آن را حل کرد. برای نشان دادن دقت و کارایی این روش چند مثال عددی ارائه شده است.
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023