روش تکرار تغییراتی برای حل معادلات دیفرانسیل کسری شبه گرما و شبه موج و بررسی همگرائی آن برای معادلات دیفرانسیل کسری چند مرتبه ای
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد
- نویسنده اباصلت نوراللهی
- استاد راهنما جعفر صابری نجفی مرتضی گچ پزان
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
در سالهای اخیر بسیاری از مسائل در علوم از قبیل فیزیک، شیمی و مهندسی به شکل معادلات دیفرانسیل کسری معمولی و معادلات دیفرانسیل کسری با مشتقات جزئی مدل بندی شده اند ، لذا روشهای حل اینگونه از معادلات به ویژه در حالت غیرخطی توجه بسیاری از محققان را به خود جلب کرده است. مهمترین هدف محققان برای حل این قبیل از معادلات این بوده است که روشی را برای حل آنها ارائه دهند که آن روش دارای کمترین خطای ممکن باشد. روشی را که برای حل معادلات دیفرانسیل کسری در این پایان نامه می خواهیم مورد بررسی قرار دهیم، روش تکرار تغییراتی میباشد. ابتدا انتگرال و مشتقات کسری، معادلات دیفرانسیل کسری و خواص اساسی آنها را مورد مطالعه قرار خواهیم داد، سپس شکل کلی این معادلات را در حالت غیر خطی در نظر گرفته و به معرفی روش تکرار تغییراتی که به منظور حل معادلات یاد شده بکار خواهد رفت، می پردازیم. در ادامه به پیاده کردن این روش برای بدست آوردن جواب تقریبی معادله ی دیفرانسیل کسری شبه موج و شبه گرما در حالت سه بعدی پرداخته و با ارائه مثال-هایی نشان خواهیم داد که این روش دارای جوابهایی نزدیک تر به جوابهای دقیق نسبت به روشهای موجود می باشد. بالاخره همگرایی این روش را برای حل معادله ی دیفرانسیل کسری چند مرتبه ای مورد بررسی قرار خواهیم داد.
منابع مشابه
بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملروش هم محلی ژاکوبی با مرتبه بالا برای معادلات دیفرانسیل کسری تک مرتبه ای غیر خطی
This article has no abstract.
متن کاملبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملروش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
متن کاملکاربرد روش تکرار تغییراتی و روش آنالیز هموتوپی برای حل معادلات شبه موج و شبه گرمای کسری
در این پایان نامه روش های تکرار تغییراتی و آنالیز هموتوپی برای حل معادلات شبه موج و شبه گرمای کسری با ضرایب متغیر به کار رفته اند. همچنین برای مقایسه نتایج، معادلات مذکور به وسیله ی روش تجزیه آدومیان نیز حل شده اند. در روش تکرار تغییراتی، با استفاده از تابعی اصلاحی و یافتن ضریب لاگرانژ عمومی از نظریه حساب تغییرات، معادله ی مورد نظر به یک دنباله ی بازگشتی تبدیل می شود که حد این دنباله به عنوان ج...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023