نامساوی هرمیت-هادامارد و نامساوی هایی از نوع مارکف برای انتگرال های فازی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه
  • نویسنده لیلا عربی
  • استاد راهنما بیاض دارابی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1390
چکیده

در این پایان نامه اندازه ی فازی? فضای اندازه ی فازی? توابع اندازه پذیر فازی و انتگرال فازی و قضایای مربوط به آن بیان شده و چندین نامساوی و انتگرال فازی مانند نامساوی پرکوپا – لیندلر، نامساوی ینسین? نامساوی چی بی شف و نامساوی استولارسکی برای انتگرال های فازی نشان داده می شود. بالاخره نامساوی هرمیت – هادامارد برای انتگرال های فازی بر اساس مقاله ی. j . caballero et al چاپ 2009 و نامساوی مارکف برای انتگرال های فازی بر اساس مقالهfranulic et al a . folers- بررسی می شود.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نامساوی های نوع هرمیت - هادامارد برای تابع h-محدب

نامساوی هرمیت-هادامارد یکی از نامساوی های مهمی است که توجه بسیاری از ریاضیدانان را به خود جلب کرده است. در این رساله ابتدا این نامساوی را برای تابع محدب بررسی می کنیم. سپس نامساوی هرمیت-هادامارد را برای برخی توابع محدب و شبه محدب دیفرانسیل پذیر ارائه می دهیم و کاربردهایی از میانگین های خاص را بیان می کنیم. به علاوه این نامساوی را برای تابع s-محدب نیز بررسی می کنیم، در ادامه پس از یک مطالعه ی گس...

نامساوی های نوع هرمیت-هادامارد برای توابع عملگرمحدب

دراین رساله, پس از بیان مقدمه ای کوتاه در مورد نامساوی مشهور هرمیت-هادامارد برای توابع محدب, قصد داریم مدلی عملگری از این نامساوی برای توابع عملگرمحدب ارائه دهیم. برای این منظور, ابتدا به تعاریف و قضایایی مقدماتی نیاز داریم که در فصل اول به آن ها پرداخته ایم. سپس در ادامه, ویژگی هایی از عملگرها را در فضاهای هیلبرت بیان می کنیم. پس از این مقدمات, نامساوی هرمیت-هادامارد را برای توابع محدب از عملگ...

نامساوی هرمیت- هادامارد برای توابع چند متغیره

باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و ج...

15 صفحه اول

نامساوی هرمیت-هادامارد روی سادکها

در این پایان نامه، ابتدا تعاریف و قضایایی در حوزه آنالیز محدب بیان می کنیم سپس چند تا از نامساوی های مربوط به تعمیم نامساوی هرمیت-هادامارد روی مثلث و چند وجهی های منتظم ثابت می شود. در نتیجه نشان داده می شود نامساوی هادامارد روی یک دیسک برقرار است اما با توجه به اینکه سمت چپ نامساوی هادامارد کوچکتر از انتگرال مقدار میانی واحد راست است، نشان داده می شود برای توابع چند متغیره این مورد صحیح نیست.و...

تعمیم نامساوی هایی از نوع مینکوفسکی برای انتگرال های سوگینو

امساوی های مشهور ریاضی نامساوی مینکوفسکی است. نامساوی کلاسیک مینکوفسکی توسط مینکوفسکی در سال 1910 منتشر شد. این نامساوی از نقطه نظر ریاضی و کاربردی بسیار مهم است. در کل هر نامساوی انتگرالی می تواند یک ابزار قوی برای کاربردها باشد. به ویژه وقتی به یک عملگر انتگرالی به عنوان یک ابزار محمولی فکر می کنیم آنگاه یک نامساوی انتگرالی در اندازه گیری و بعد سازی چنین فرایندهایی کاربردی می تواند مهم باشد.د...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023