اعداد زیرتقسیم احاطه ای در گرافها
پایان نامه
- دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
- نویسنده رعنا خوییلر
- استاد راهنما سید محمود شیخ الاسلامی بهروز خیرفام
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
مجموعهs از رئوس گراف gرا یک مجوعه احاطه گر تام نامند هرگاه هر رأس درv(g) با حداقل یک رأس از s مجاور باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر تام را عدد احاطه ای نامیده و با?_(t ) (g) نشان می دهند. مجموعه s را یک مجموعه احاطه گر همبند مضاعف در g نامند هرگاه هر رأس درv(g)-s با حداقل یک رأس از s مجاور بوده و زیرگرافهای القایی g[s] و g[v-s] همبند باشند. مینیمم اندازه یک مجموعه احاطه گر همبند مضاعف در g را عدد احاطه ای همبند مضاعف آن نامیده و با ?_cc (g) نشان می دهند. مینیمم تعداد یالهایی از گراف g را که با زیرتقسیم ـآنها عدد احاطه ای تام (عدد احاطه ای همبند مضاعف) افزایش یابد، عدد زیرتقسیم احاطه ای تام (عدد زیرتقسیم احاطه ای همبند مضاعف) نامیده و ب) sd_(?_t ) (g) sd_(?_cc ) (g) (نشان می دهند. فاوارون و همکارانش حدس زدند که در هر گراف همبند g از مرتبه n?3، sd_(?_(t ) ) (g)??_t (g)+1 و آن را برای برخی گرافها ثابت کردند. در این رساله، این حدس را برای گرافهایی که هر رأس آنها مشمول در حداکثر سه دور القایی c_4 باشد و گرافهای همبندی که دورهای القایی c_3 و c_5 ندارند، ثابت کرده و یک کران بالا برای عدد زیرتقسیم احاطه ای تام در رده خاصی از گرافها بر حسب عدد جورسازی ارایه می دهیم. همچنین عدد زیرتقسیم احاطه ای همبند مضاعف را مطالعه کرده و کرانهایی را برای آن برحسب پارامترهای مختلف یک گراف ارایه می دهیم.
منابع مشابه
اعداد احاطه ای فراگیر تام در گرافها
فرض کنید گرافی با مجموعه رأس های و مجموعه یال های باشد. زیر مجموعه مجموعه احاطه گر است، هرگاه هر رأس در مجاور با حداقل یک رأس در باشد. عدد احاطه ای ? ? مینیمم کاردینال مجموعه های احاطه گر در است. مجموعه احاطه گر همبند از گراف را مجموعه احاطه گر فراگیر همبند - مجموعه در نامند هرگاه مجموعه احاطه گر همبند در نیز باشد. عدد احاطه ای فراگیر همبند? ? مینیمم کاردینال مجموعه های احاطه گر فراگیر همبند در...
15 صفحه اولنکاتی در خصوص پایداری احاطه گر رومن علامتدارتام در گرافها
چکیده :فرض کنیم یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...
متن کاملبررسی عدد احاطه ای رومی در گرافها
مجموعه های احاطه گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی $s$ از $v(g)$ را یک مجموعه ی احاطه گر گویند هرگاه $n[s]=v(g)$. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با $gamma(g)$ نمایش می دهند. تابع $f:v(g) ightarrow {0,1, 2}$ را یک تابع احاطه گر رومی روی...
15 صفحه اولعدد احاطه ای مهار شده در گرافها
فرض کنید g = (v;e) گرافی با مجموعه رئوس v و مجموعه یالهای e باشد. مجموعه d از از رئوس گراف g یک مجموعه احاطه گر است هرگاه هر عضو v-d با راسی از d مجاور باشد. مجموعه d از رئوس گراف g یک مجموعه احاطه گر مهار شده است هرگاه هر راسی که در d نیست با راسی از d و راسی از v-d مجاور باشد. عدد احاطه ای مهار شده g یعنیr(g) مینیمم اندازه یک مجموعه احاطه گر مهار شده در g است. در این پایان نامه کرانهایی برایr...
15 صفحه اولاحاطه کننده رنگی در گرافها
ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023