پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی

پایان نامه
چکیده

استفاده از نسبت های مالی برای پیش بینی ورشکستگی شرکتها، همیشه مورد توجه دانشگاهیان و بنگاه های اقتصادی، بویژه بانک ها و سایر نهاد های مالی بوده است. پیش بینی به موقع میتواند تصمیم گیران را در یافتن راه حل و پیشگیری از ورشکستگی، یاری نماید. همچنین، این مدل ها کاربرد بسیار زیادی در رتبه بندی اعتباری و نحوه توزیع تسهیلات بانکی دارد. در چنین مطالعاتی معمولا از مدل های آماری مانند تحلیل ممیز چندگانه (mda) ، تحلیل لوجیت، تحلیل پروبیت و ... استفاده شده است.مطالعات اخیر در خصوص شبکه های عصبی مصنوع (ann) نشان می دهد که این الگو به علت دارا بودن ویژگی های غیر خطی ، ناپارامتریک و یادگیری تطبیقی ، ابزار قدرتمندی برای دسته بندی وشناسایی این الگو می باشند، اولین تلاش برای استفاده از شبکه ی عصبی مصنوعی در پیش بینی ورشکستگی توسط ادم و شارادا (1990) صورت گرفت. در این پژوهش، با استفاده از مدل شبکه عصبی مصنوعی (ann)، به پیش بینی ورشکستگی شرکتهای تولیدی پذیرفته شده در بورس اوراق بهادار تهران پرداخته شده است و همچنین ارائه الگویی از مدل شبکه عصبی مصنوعی (ann)و نیز مروری جامع بر مدل های پیش بینی ورشکستگی انجام شده است. به منظور بررسی اثر تفاوت ناشی از نمونه ها در پیش بینی، از روش معتبر سازی مقطعی استفاده شده است. در این تحقیق مدل شبکه عصبی مصنوعی با مدل آماری رگرسیون لجستیک (lr) که یک مدل پر کاربرد آماری در پیش بینی ورشکستگی است مقایسه شده است. نتایج حاصله از این مدلها، بر اساس اطلاعات 80 شرکت، نشان داد که مدل شبکه عصبی مصنوعی در پیش بینی ورشکستگی، به طور معنی داری نسبت به مدل رگرسیون لجستیکاز دقت پیش بینی بیشتری برخوردار است .

منابع مشابه

پیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی

آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...

متن کامل

ارائه مدل ریاضی پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران

در این مقاله پنج مدل مهم پیش‌بینی ورشکستگی را مطالعه و از میان متغیرهای پنج مدل، مدل بازطراحی شده پیش‌بینی ورشکستگی را ارائه می‌کنیم که دربرگیرنده هشت متغیر می‌باشد.  مسأله اصلی در این تحقیق این است که با بررسی و تحلیل صورت‌های مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران بتوانیم مدلی برای پیش‌بینی ورشکستگی شرکت‌ها ارائه نماییم.  به منظور طراحی مدل، از اطلاعات دو گروه از شرکت‌های پذیرفت...

متن کامل

پیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکه‎های عصبی مصنوعی

هدف اصلی این مقاله پیش‎بینی ورشکستگی مالی شرکت‎ها در بورس اوراق بهادار تهران به وسیله‎ی شبکه‎های عصبی مصنوعی است. مقادیر میانگین مربوط به نسبت‎های مالی کلیدی در پژوهش‎های صورت گرفته در پیشینه موضوع به‎عنوان ورودی شبکه‎های عصبی انتخاب شده‎اند. شبکه عصبی به‎کار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیده‎اند و شامل شبکه عصبی پیش‎خور سه لایه با ت...

متن کامل

پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از الگوریتم کرم شب تاب(FA)

سرمایه گذاران ، سهامداران، مدیران و دیگر ذینفعان با ورشکسته شدن شرکت، متضرر شده و دارایی خود را از دست خواهند داد. بنابراین وجود مکانیزمی که به بررسی و پیش بینی بحران مالی شرکت ها بپردازد امری ضروری و اجتناب ناپذیر بشمار می رود. تحقیقات متعددی در خصوص پیش بینی ورشکستگی صورت گرفته که استفاده از الگوریتم های هوش مصنوعی و فرا اکتشافی از نمونه مدل های دهه اخیر می باشند. در این پژوهش با استفاده از ا...

متن کامل

پیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی

پیش­بینی تغییر قیمت سهام به عنوان یک فعالیت چالش­انگیز در پیش­بینی     سری­های زمانی مالی در نظر گرفته می­شود. یک پیش­بینی صحیح از تغییر قیمت سهام می­تواند سود زیادی را برای سرمایه­گذاران به بار آورد. با توجه به پیچیدگی داده­های بازار بورس، توسعه مدل­های کارآمد برای پیش­بینی بسیار دشوار است. در این پژوهش، مدلی برای پیش­بینی قیمت سهام شرکت­های بورس اوراق بهادار تهران با بکارگیری داده­های درون­زا...

متن کامل

طراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)

در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای  شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور استان مازندران - دانشکده علوم انسانی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023