دینامیک نمایی مختلط
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
- نویسنده الهام عظیمی ابرقویی
- استاد راهنما حسین خورشیدی سید محمد مشتاقیون
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
سیستم های دینامیکی از سه جز تشکیل می شوند: فضای فاز که عناصر آن موقعیت سیستم را نشان می دهند، زمان که ممکن است گسسته یا پیوسته باشد و قاعده تغییر سیستم. بر این اساس سیستم های دینامیکی به دو دسته یعنی گسسته و پیوسته تقسیم می شوند.در فصل اول مفاهیمی از توپولوژی، توابع مختلط و سیستم های دینامیکی در حالت کلی را با ذکر مثال هایی از این سیستم هاارائه می کنیم . فصل دوم شامل معرفی مفاهیم مقدماتی سیستم های دینامیکی مختلط گسسته(مانند طبقه بندی نقاط ثابت، مجموعه ژولیا و مجموعه فاتو)و همچنین مقدماتی از آنالیز مختلط می باشد. به عنوان مثال نقطه ثابت یک تابع نقطه ای است که مقدار تابع در این نقطه با خود آن نقطه برابر است. نقاط ثابت برای یک تابع عبارتنداز: جذبی، فوق جذبی، دفعی، خنثی یا بی تفاوت. نقاط متناوب از دوره تناوب n را دورهایی از دوره تناوب n می نامیم. یعنی نقاطی که تکرار تابع در مرتبه nام در انها با خود این نقاط برابر است. مشابه نقاط ثابت، طبقه بندی برای نقاط متناوب موجود است. مجموعه ژولیا برای یک تابع مجموعه نقاطی است که در آنها خانواده ای از تکرارهای تابع نرمال نباشند. متمم مجموعه ژولیا مجموعه فاتو نامیده می شود. دورهای جذبی در مجموعه فاتو واقع می شوند. در فصل سوم دینامیک چندجمله ای های درجه دو را مطالعه نموده، به خصوص مجموعه مندلبروت را مورد بررسی قرار می دهیم. برای چندجمله ای های درجه دو، دو نوع مجموعه ژولیا موجودند: مجموعه های کانتور و مجموعه های ژولیایی که همبند هستند. در این فصل مشاهده می کنیم که مجموعه مندلبروت از یک پایه دلگون (ناحیه نقاط ثابت جذبی) تشکیل شده که از آن پیازهای متعددی آویزان است. همچنین دو مفهوم درخت فاری و مضاعف شدن رانیز بیان می کنیم.در واقع، درخت فاری شامل همه اعداد گویای بین صفر و یک است و تابع مضاعف شدن روی دایره واحد چنین تعریف می شود که اعداد حقیقی را با پیمانه یک در نظر می گیرد. نهایتا در فصل چهارم به دینامیک توابع نمایی که نوع خاصی از توابع متعالی تام می باشند، می پردازیم. برای توابع متعالی تام به طور بحرانی متناهی، یک انشعاب، مشابه حالت درجه دو موجود است؛ یا مجموعه ژولیا تمام صفحه است یا هیچ جا چگال بوده و شامل دسته گل های کانتور است. در این فصل ابتدا ایده ساخت دسته گل کانتور را بیان نموده سپس به نحوه ساخت دسته گل کانتور می پردازیم. مجموعه نقاط پایانی یک دسته گل کانتور را تاج گوییم. هر دسته گل کانتور خواص همبندی عجیبی دارد که همراه با نقطه در بینهایت همبند است اما تاج به تنهایی کلا ناهمبند است همچنین دسته گل هیچ کجا همبند موضعی نیست.
منابع مشابه
دینامیک مختلط و دینامیک نمادین
برای نگاشت های چندجمله ای مختلط ساختار فضای پارامتری را در نظر خواهیم گرفت. این فضای پارامتری به دو ناحیه مجزا تقسیم می شود؛ مکان هندسی گریز و مکان هندسی کراندار. مکان هندسی گریز شامل آن پارامترهایی است که همه نقاط بحرانی به بی نهایت می گریزند و آن پارامترهایی که به ازای آنها، حداقل یک نقطه بحرانی دارای مدار کراندار باشد، در مکان هندسی کراندار قرار می گیرند. ثابت شده است وقتی یک پارامتر از مکا...
ازدواج مختلط اتباع ایران
ازدواج با اتباع بیگانه در کشورهای مختلف و در کنوانسیونهای بینالمللی همواره مورد بحث بوده است. برخی از نظامهای حقوقی به منظورحمایت از خانواده، طرفدار وحدت تابعیت زوجین و برخی دیگرجهت رعایت تساوی حقوق زن و مرد، طرفدار استقلال تابعیت هر یک از زوجین میباشند. در ایران این مطلب بر حسب این که زن ایرانی باشد و با مرد خارجی ازدواج کند، یا زن خارجی باشد و با مرد ایرانی ازدواج کند، به دو صورت جداگانه و...
متن کاملماتریس نمایی در فیزیک
در این مقاله پس از معرفی تابع نمایی، ماتریس نمایی را بیان خواهیم کرد. در ادامه ضمن بیان ویژگی هایی از ماتریس نمایی، چند روش محاسبه آن را به اختصار شرح می دهیم. سپس کاربردهایی از ماتریس نمایی در فیزیک بیان می شود.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023