حل عددی معادلات با مشتقات جزئی با استفاده از روشهای هم مکانی توابع پایه ای شعاعی نامتقارن
پایان نامه
- دانشگاه تربیت معلم - تبریز - پژوهشکده علوم پایه کاربردی
- نویسنده لیلا واحدی
- استاد راهنما مجتبی رنجبر علی خانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
در این پایان نامه جواب تقریبی معادلات با مشتقات جزئی خطی و غیر خطی را مطالعه می کنیم که به صورت ترکیب خطی متناهی از rbfها نوشته می شود مبنای کار روش هم محلی می باشد در این روشها همواره یک ماتریس مربعی درونیاب بدست می آید که بسیار بدحالت بوده بنابراین حل دستگاه و محاسبه ی جواب به طور دستی کار سختی بوده برای همین دلیل و همچنین به دلیل بعد بالای ماتریس از نرم افزار مطلب استفاده می کنیم.
منابع مشابه
حل عددی معادلات دیفرانسیل با مشتقات جزئی evolution با استفاده از توابع پایه شعاعی
معادلات دیفرانسیل با مشتقات جزئی تکامل نقش مهمی در شاخه های مختلف علوم مهندسی نظیر فیزیک پلاسما، فیزیک جامدات و شیمی دارند. در این رساله به حل عددی برخی از این نوع معادلات پرداخته ایم. در سال های اخیر، توابع پایه شعاعی به طور گسترده ای برای حل این نوع از معادلات به کار رفته است. این توابع بر اساس نرم اقلیدسی تعریف می شوند و به راحتی برای ابعاد بالا قابل تعمیم هستند و در تقریب توابع، نقاط درونیا...
حل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی با استفاده از توابع پایه شعاعی
در این پایان نامه به معرفی توابع پایه شعاعی پرداخته ایم در نهایت حل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی به کمک تابع پایه شعاعی مولتی کوادریک به روشهای مستقیم و غیر مستقیم را مورد بررسی قرار داده ایم.
حل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
متن کاملحل معادلات ناویر- استوکس به کمک روشهای بدون شبکه توابع پایه شعاعی
معادلات ناویر- استوکس به طور گسترده در زمینههای مختلف علوم مانند مدل سازی جریانهای اقیانوسی، جریان جاری در یک لوله، جریان های اطراف یک بال و به طور کلی در دینامیک سیالات کاربرد دارند. در این مقاله روش بدون شبکه توابع پایه شعاعی برای حل این معادلات به کار گرفته خواهد شد به این ترتیب که ابتدا ایده منظم سازی برای تبدیل معادله مورد نظر به دستگاه معادلات دیفرانسیل معمولی مورد استفاده قرار می گیرد...
متن کاملحل عددی معادلات دیفرانسیل با مشتقات جزیی از مرتبه کسری با استفاده از توابع پایه شعاعی
محاسبات کسری در چند سال اخیر بازتاب خوبی در علوم و مهندسی داشته است و کارهای قابل ملاحظه ای در زمینه کاربردها و حل عددی معادلات شامل، مشتق از مرتبه کسری انجام شده است. از جمله این معادلات، می توان به معادلات دیفرانسیل با مشتقات جزیی از مرتبه کسری اشاره کرد که در زمینه های متفاوتی از جمله سیستم های فیزیکی مانند زمین شناسی، علوم محیط زیست، مهندسی برق و مکانیک دارای کاربردهای زیادی می باشند.در این...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه تربیت معلم - تبریز - پژوهشکده علوم پایه کاربردی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023