پیش بینی کیفیت محصولات فولاد آلیاژی با استفاده از شبکه های عصبی مصنوعی(ann)
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده مدیریت و حسابداری
- نویسنده سعید میرحسینی
- استاد راهنما حسن فارسیجانی محمد رضا حمیدی زاده
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
صنعت فولادسازی از جایگاه ویژه ای در کشور ها بر خوردار است ومیزان تولید ومصرف آن یکی از شاخصهای توسعه در کشورهاست .کاربرد محصولات فولادی در صنایع حساس، دسترسی به کیفیت بالا را اهمیت دو چندان می بخشد . طراحی مطلوب وکنترل فرآیند نقشی اساسی درنیل به کیفیت دارد لیکن ماهیت فرایند فولادسازی پیش بینی کیفیت محصولات تولیدی را با مشکل مواجه می سازد .استفاده از یک سیستم هوشمند جهت مدل سازی و پیش بینی می تواند تولید کنندگان را در جهت تولید محصول کیفی یاری نماید و لذا این مقاله می کوشد با بکار گیری روش شبکه های عصبی مصنوعی ?(ann) به دسته بندی علل بروز عیب آخال و پیش بینی بروز آخال خارج از استاندارد در محصول نهایی نماید .برای شبکه های عصبی مصنوعی از شبکه های پیشرو با آموزش پس انتشار خطا استفاده شده است . نتایج این تحقیق نشان دهنده تطبیق بسیار مناسب مقادیر عملی و مقادیر پیش بینی شده توسط شبکه عصبی است.
منابع مشابه
پیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...
متن کاملپیش بینی تأخیر قطارهای مسافری با استفاده از شبکه های عصبی
تأخیر در قطارهای مسافری از مسائل چالش بر انگیز در راه آهن محسوب شده و علتهای مختلفی دارد، و همین مسئله، پیشبینی تأخیر قطارهای مسافری را بسیار مشکل میکند. هدف این مقاله ارائه مدلی مبتنی بر شبکههای عصبی با دقت بالا برای پیشبینی تأخیر قطارهای مسافری در راه آهن جمهوری اسلامی ایران است. در این مقاله از سه روش مختلف برای ورودی شبکههای عصبی شامل ورود به صورت اعداد حقیقی نرمال شده، تبدیل ورودی...
متن کاملپیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی
در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...
متن کاملپیش بینی کوتاه مدت بار استان چهارمحال و بختیاری با استفاده از اجماع شبکه های عصبی
پیشبینی کوتاه مدت بار در بازار برق اهمیت زیادی دارد. از طرفی عوامل مهم تأثیرگذار بر پیشبینی کوتاه مدت بار به ویژگیهای بار الکتریکی و آب و هوایی هر منطقه بستگی دارد، بنابراین با استفاده از دادههای واقعی استان چهارمحال و بختیاری-شامل بار و دما- به پیشبینی کوتاه مدت بار الکتریکی استان پرداختهایم. بدین منظور با استفاده از چهار روش مختلف شبکه عصبی پرسپترون (MLp < /strong>)، مجمعی از شبکه عصبی ...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده مدیریت و حسابداری
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023