بسط هایی از ساختارهای ت-کمینه ضعیف غیرارزیابی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
- نویسنده اکرم رضایی کنگرلویی
- استاد راهنما جعفرصادق عیوضلو حمید موسوی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
در این پایان نامه که براساس دو مقاله از رومن ونسل نوشته می شود، ابتدا نشان داده می شود که اگر m,<,+,...) ) یک بسط ت-کمینه ضعیف غیرارزیابی از یک گروه مرتب (m,<,+) باشد، آنگاه بسط آن با گردایه ای از محمولات تک موضعی غیرارزیابی همچنان غیرارزیابی باقی می ماند. سپس با به کار بردن نتیجه ای از دایاز درباره استقلال جبری دنباله های معینی از اعداد، نشان داده می شود که اگرk یک میدان از درجه تعالی متناهی روی میدان اعداد گویا باشد، آنگاه هر بسط ت-کمینه ضعیف ازk,<,+,.) )به طور چندجمله ای کراندار است. کلیدواژه ها: ت-کمینه ضعیف، بسط غیرارزیابی، محمول غیرارزیابی، درجه تعالی متناهی
منابع مشابه
ساختارهای ت- کمینه ضعیف غیرارزیابی
در این پایان نامه که مبتنی بر نتایج منبع [11] نوشته می شود، ضمن مرور برخی خواص ساختارهای ت-کمینه از جمله یکنوایی قوی و تجزیه سلولی بررسی آنها برای ساختارهای ت-کمینه ضعیف نشان داده خواهد شد که هر بسط ت-کمینه ضعیف غیرارزیابی از یک گروه مرتب دارای خواص تجزیه سلولی و یکنوایی قوی می باشد. همچنین برای ساختارهای ت-کمینه ضعیف با خاصیت تجزیه سلولی قوی توسیع ت-کمینه متعارف ساخته میشود. در پایان صورت ضعیف...
ساختارهای موضعاً ت-کمینه و ساختارهای با هسته باز موضعاً ت-کمینه
در این پایان نامه ساختارهای موضعاً ت-کمینه و ساختارهای دارای هسته باز موضعاً ت-کمینه مورد مطالعه و بررسی قرار می گیرند. در این راستا، پس از معرفی ت-کمینگی موضعی و ارایه مثال ها و قضایای مرتبط، به بررسی ساختارهای با هسته باز پرداخته و مشخصه ای برای داشتن هسته باز موضعاً ت-کمینه ارایه می نماییم. در این نوشتار توجه بیشتر بر بسط هایی از میدان های مرتب معطوف می باشد که به طور تعریف پذیر کامل بوده و خود...
زوج های چگال از ساختارهای ت-کمینه
در نظریه ی مدل اصلی ترین و مهمترین کار در بررسی ساختارها، مشخص کردن زیرمجموعه های تعریف پذیر و توابع تعریف پذیر در آن ساختارها می باشد. مشخص کردن زیرمجموعه ها و توابع تعریف پذیر راه مطالعه ی این ساختارها را هموار خواهد کرد. در این پایان نامه سعی شده زیر مجموعه ها و توابع تعریف پذیر در زوج های چگال از ساختارهای ت-کمینه مشخص شوند.(یک ساختار را ت-کمینه می نامیم هرگاه زیر مجموعه های تعریف پذیر آن ...
15 صفحه اولساختارهای دارای هسته باز ت-کمینه
فرض کنید r یک توسیع به طور تعریف پذیر کامل (یعنی فاقد شکاف ددکیند تعریف پذیر) از یک گروه مرتب چگال (r,<,*) باشد که در خاصیت تناهی یکنواخت صدق می کند (یعنی هر خانوادهی تعریف پذیر از زیرمجموعه های متناهی دارای یک کران بالای متناهی برای تعداد اعضای زیرمجموعهها می باشد). در این صورت هسته باز r ت-کمینه است. در ادامه دو رده از ساختارهایی که ت-کمینه نیستند اما هسته باز ت - کمینه دارند مورد بحث قرا...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023