مجموعه های آشوبناک روی توابع پیوسته و نا پیوسته

پایان نامه
چکیده

در این پایان نامه ،مجموعه های آشوبناک روی توابع پیوسته و نا پیوسته را از دید لی- یورک مورد بررسی قرار می دهیم و برای توصیف مجموعه های آشوبناک لی- یورک،مجموعه های آمیخته و آمیخته ماکسیمال را معرفی می کنیم.همچنین رابطه بین پایا مدارها و مجموعه آمیخته را بیان می کنیم. در نهایت هم ارزی و یکتایی مجموعه های آمیخته ماکسیمال را بررسی می کنیم.

منابع مشابه

آشنایی با حلقه های توابع پیوسته

این مقاله شرحی است از روند تاریخی پیدایش نظریه حلقه های توابع پیوسته و بیان موضوعات اصلی پژوهش در این زمینه از ریاضیات همراه با توصیف فعالیت های پژوهشی انجام شده در کشور طی سالهای گذشته و در حال حاضر.

متن کامل

برخی توپولوژی های اکید روی فضای نا ارشمیدسی توابع پیوسته

در این پایان نامه پس از ذکر مقدماتی از آنالیز تابعی ناارشمیدسی به بررسی چند توپولوژی موضعاً محدب روی فضای توابع پیوسته و توابع پیوسته ی کراندار با مقادیر در یک فضای موضعاً محدب ناارشمیدسی می پردازیم. به ویژه برخی خواص توپولوژیک این فضا تحت توپولوژی اکید را بررسی می کنیم.

حلقه های توابع پیوسته در دهه ی پنجاه

آن چه که در پی می آید تجدید خاطره ی نویسنده از پیدایش و آغاز رویش حلقه های توابع پیوسته با تاکید بر روی کارهایی است که در دهه ی پنجاه در دانشگاه پوردو انجام شده است. ادعایی بر بی نقص بودن یا تاریخی-تحقیقی بودن آن نیست. مقداری از کار انجام شده در آن زمان مورد بحث قرار گرفته و ارجاعات به کتاب ها و مقالات مروری آن دوره را در بر گرفته است. روی هم رفته نمادهایی که در ادامه مورد استفاده قرار گرفته از...

متن کامل

آشنایی با حلقه های توابع پیوسته

این مقاله شرحی است از روند تاریخی پیدایش نظریه حلقه های توابع پیوسته و بیان موضوعات اصلی پژوهش در این زمینه از ریاضیات همراه با توصیف فعالیت های پژوهشی انجام شده در کشور طی سالهای گذشته و در حال حاضر.

متن کامل

مدول توابع روی حلقه توابع پیوسته

تعریف: فضای توپولوژی x، یک فضای k تفکیک پذیر نامیده می شود، اگر به ازای هر دو نقطه متمایز a و b از آن، بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(b)=0. تعریف: فضای توپولوژی x با خاصیت t1 را، k- منظم می نامیم هرگاه به ازای هر x a و هر زیر مجموعه بسته که بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(x)=0 و b در x . ابتدا توجه می کنیم که فضاهای k- منظم غیر یکسان ریخت x و y موجودند که (x,k)c و...

15 صفحه اول

نگاشت های جداکننده روی جبرهای توابع پیوسته

قضیه ی معروف استون – باناخ بیان می کند که طولپایی های پوشا از (c0(x به (c0(y عملگرهای ترکیبی وزندار هستند، که در آن x و y دو فضای موضعاً فشرده و هاسدورف می باشند. در این پایان نامه به بررسی ساختارعملگرهای ترکیبی وزندار از (c0(x به (c0(y می پردازیم و ثابت می کنیم هر طولپایی غیرپوشا و نگاشت های خطی جداکننده اساساً عملگرهای ترکیبی وزندار می باشند. همچنین خواص کلی نگاشت های خطی جداکننده-ی t از (c00(x...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023