امید شرطی و عملگرهای ترکیبی وزن دار روی برخی از فضاهای توابع

پایان نامه
چکیده

بنام خدا متناظر با هر زیر جبر متناهی از جبرمتناهی عملگر (به اختصار را با نشان می دهیم ) موسوم به عملگر امید شرطی تعریف شده روی فضای توابع اندازه پذیر و یا روی فضاهای برای وجود دارد که با شرایط زیر به طور یکتا معین می شود: (آ) یک تابع اندازه پذیر و انتگرال پذیر است. (ب) برای هر اگر موجود باشد، آنگاه این عمگر ابزار اصلی در این رساله است. حال با توجه به عملگر امید شرطی عملگر را به نام ضربگر لامبرت به صورت برای هر تعریف می کنیم که در آن یک تابع اندازه پذیر و شرط پذیر دلخواه به نام تابع وزن است. بررسی کرانداری در حالتهای مختلف، فردهلم بودن این عملگر، خودالحاق بودن، نرمال بودن و برخی ویژگی های دیگر این عملگر از اهداف اصلی این رساله است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عملگرهای از نوع شرطی و ترکیبی وزن دار روی بعضی از فضاهای توابع

در این رساله به بررسی کران داری ضربگرهای لامبرت با برد عملگرهای ترکیبی روی فضاهای ‎$l^p(sigma)$‎ می پردازیم. بر این اساس، برخی از ویژگی های عملگرهای امید شرطی را نسبت به زیرجبرهای ‎$sigma$‎ از نوع صفر بررسی می کنیم. همچنین، به مطالعه ی عملگر ترکیبی وزن دار ‎‎ روی فضای فرم های دیفرانسیل اندازه پذیر ‎ می پردازیم. به علاوه، بعضی خواص این عملگرها مانند کران داری، تعلق به کلاس های به طور ضعیف ن...

15 صفحه اول

الحاقی عملگرهای ترکیبی و ترکیبی وزن دار روی برخی از فضاهای توابع تحلیلی

در این رساله نشان می دهیم که ارتباط عمیقی بین الحاقی رده وسیعی از عملگرها روی فضاهای هاردی وزن دار مختلف وجود دارد. سپس به تعیین الحاقی عملگرهای ترکیبی و ترکیبی وزن دار با نماد کسری روی فضاهای برگمن، دیریکله می پردازیم.‎ در ادامه تعمیمی از عملگرهای ترکیبی و توابع هسته ای بازیافت را روی فضاهای هاردی وزن دار معرفی و برخی خواص آنها را بررسی می کنیم. سپس الحاقی عملگرهای تعمیم یافته با نماد کسری...

عملگرهای امید شرطی وزن دار

دراین پایان نامه ویژگی های اساسی حاصلضرب ها ی عملگرها ی امید شرطی و عملگر ضربی از دیدگاه نظریه عملگرها مورد بررسی قرار می گیرد. و نشان داده می شود که کرانداری چنین حاصلضرب هایی وابسته به کراندار ی عملگر ضربی نمی باشد. طیف این عملگرها به عنوان یک تجزیه قطبی منحصربفرد توصیف می شود.همچنین نشان داده می شود که فشردگی این عملگرها مستلزم وجود یک اتم نسبت به? ‎-زیرجبر مورد نظر می باشد. جبر ی که شامل چن...

مشخص سازی برخی از فضاهای توابع تحلیلی و عملگرهای ترکیبی وزن دار روی آنها

در این رساله برخی از فضاهای توابع تحلیلی را با مترهای خاصی مشخص سازی می کنیم. سپس اثر عملگرهای ترکیبی وزن دار را روی این فضاها مورد بررسی قرار می دهیم.

عملگرهای ترکیبی وزن دار روی فضاهایی از توابع اندازه پذیر

رده های زیادی از عملگرها روی فضای هیلبرت وجود دارند به طوری که ضعیف تر از رد? عملگرهای هیپونرمال هستند‎،‎ مانند عملگرهای ‎$p$-هیپونرمال، $p$-‎شبه هیپونرمال‎، $p$-پارانرمال،‎ نرمالوئید و ‎... .‎ در این رساله از دیدگاه نظری? اندازه‎،‎ عملگرهای از نوع ترکیبی‎،‎ ترکیبی وزن دار‎،‎ الحاقی عملگرهای ترکیبی وزن دار و تبدیلات آلوثگ تعمیم یافته وابسته به آنها را روی فضای ‎$l^2(sigma)$‎ در نظر گر...

15 صفحه اول

عملگرهای ترکیبی بر فضاهای هاردی وزن دار

این پایان نامه مشتمل بر چهار فصل می باشد. در فصل اول تعاریف و قضیه های پیش نیاز در فصل های بعدی آورده شده است. در فصل دوم به معرفی عملگرهای ترکیبی روی فضاهای باناخ شامل سریهای توانی صوری می پردازیم. همچنین فردهلم بودن و نرم اساسی و فشرده بودن عملگرهای ترکیبی را در چند قضیه بررسی می کنیم. در فصل سوم به دوری و ابردوری بودن عملگر ترکیبی بر فضاهای هاردی وزن دار پرداخته و عملگرهای ترکیبی دوری و ا...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023