حل عددی معادلات انتگرال کسری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
- نویسنده بتول شفیعی
- استاد راهنما قاسم بریدلقمانی فرید(محمد) مالک قایینی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
در این پایان نامه ابتدا حسابان کسری را به طور مختصر معرفی کرده سپس به معرفی و تقسیم بندی معادلات انتگرال معمولی و کسری می پردازیم. در ادامه پس از بیان تعاریف و مفاهیم لازم درباره ی موجک ها، به طور خاص موجک هار را مورد بررسی قرار داده و به کمک این موجک و با استفاده از روش هم محلی به حل معادلات انتگرال فردهلم و ولترای کسری و نیز معادلات انتگرال- دیفرانسیل کسری می پردازیم. دیدیم که وقتی اندیس سطح تفکیک موجک افزایش می یابد، تقریب های بهتری به دست می آید. از مزایای روش موجک هار نسبت به سایر موجک ها می توان به سادگی و سطح محاسبات نسبتاً کم آن اشاره کرد در فصل چهارم روش تبدیل دیفرانسیلی کسری را برای حل معادلات انتگرال- دیفرانسیل ولترای کسری بررسی می کنیم و با ذکر چند مثال نشان می دهیم که این روش قابل استفاده برای مسائل مقدار اولیه و مقدار مرزی خطی یا غیر خطی می باشد. همچنین امکان پیاده سازی روش بر روی دستگاه معادلات انتگرال- دیفرانسیل کسری وجود دارد. با ارائه ی یک مثال نشان می دهیم که اگر جواب معادله به صورت سری توانی باشد، این روش جواب دقیق را به دست می دهد. در سایر موارد، با افزایش تعداد جملات درنظرگرفته شده در جواب سری می توان دقت را بهبود بخشید. با مقایسه جواب های به دست آمده از این روش و روش موجک هار می توان نتیجه گرفت که این روش دارای دقت خوبی است و حتی دقت آن از روش موجک هار نیز بیشتر می باشد. در پایان باید به این نکته نیز توجه کرد که روش تبدیل دیفرانسیلی با وجود تمام مزایا فقط قابل استفاده برای معادلاتی است که بتوان تبدیل دیفرانسیلی تمام جملات آن را نوشت و این باعث محدود شدن دامنه اعمال روش می شود.
منابع مشابه
بهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملحل عددی معادلات انتگرال دیفرانسیل فردهلم تفاضلی و کسری
این پایان نامه در پنج فصل تدوین شده است که در آن ابتدا مفاهیم اولیه وتعاریف مقدماتی رابیان می کنیم. سپس حل عددی معادلات انتگرال دیفرانسیل خطی فردهلم مرتبه های بالا با ضرایب مختلف, روش تفاضلات متناهی چبیشف برای معادله انتگرال دیفرانسیل فردهلم و روش هم مکانی لژاندر برای معادلات انتگرال دیفرانسیل کسری را مورد بحث و بررسی قرار می دهیم.
15 صفحه اولموجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات
این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملحل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023