نظریه نقطه انتهایی برای نگاشت های انقباضی مجانبی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی و کامپیوتر خوانسار
  • نویسنده مریم توتونچی
  • استاد راهنما مجید فخار جعفر زعفرانی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1388
چکیده

در این پایان نامه به بررسی تعدادی از سیستم های دینامیکی مجموعه مقدار و نقاط انتهایی آنها می پردازیم و دنباله هایی را به دست می آوریم که همگرا به این نقاط انتهایی هستند. هدف، تعمیم قضیه ی انقباضی باناخ و پیدا کردن شرایطی روی فضای و روی نگاشت مجموعه مقدار tاست به طوری که این نگاشت ها دارای نقطه ی انتهایی باشند. به این منظور چند نوع از نگاشت های انقباضی را معرفی کرده و روشهای مفیدی برای به دست آوردن شرایطی که وجود و یکتایی نقطه ی انتهایی برای این انقباض ها و همگرایی همه ی دنباله های تعمیم یافته از تکرار این انقباض ها به این نقاط انتهایی را تضمین می کنند، ارائه می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاشت های نقطه وار انقباضی مجانبی

هدف این رساله بررسی روش هایی برای یافتن نقاط ثابت نگاشت های نقطه&وار ناانبساطی و نقطه&وار ناانبساطی مجانبی است که در سه فصل تنظیم شده است. در فصل دوم به معرفی روش ها برای یافتن نقاط ثابت نگاشت های نقطه&وار ناانبساطی و نقطه&وار ناانبساطی مجانبی روی زیرمجموعه های ناتهی، محدب، بسته و کراندار از فضاهای باناخ به طور یکنواخت محدب و در فصل سوم به بررسی شرایط کلی&تر از نگاشت&های نقطه&وار ناانبساطی پردا...

15 صفحه اول

قضایای نقطه ثابت برای انقباض ها و نگاشت های انقباضی نقطه وار مجانبی

این پایان نامه مروری بر برخی نتایج نظریه نقطه ثابت متریک است که همگی آنها تعمیم هایی از اصل اقباض باناخ هستند. بویژه،در این پایان نامه به کارهای اخیر انجام شده توسط کرک در زمینه نقطه ثابت انقباض های نقطه وار، انقباض های نقطه وار مجانبی و نگاشت های مجانباً انقباضی نقطه وار در فضاهای باناخ توجه خاص شده است.

15 صفحه اول

فرآیند تکرار مان برای نگاشت های نامنبسط نقطه به نقطه مجانبی در فضاهای متری

در این پایان نامه فضای متری محدب یکنواخت، 2-محدب یکنواخت، هذلولی گون و نگاشت نامنبسط نقطه به نقطه مجانبی را معرفی می کنیم.سپس فرآیند تکرار مان اصلاح شده را روی این نگاشت تعریف می کنیم.همچنین نشان می دهیم که فرآیند تکرار مان اصلاح شده به نقطه ثابت نگاشت t همگراست.در ادامه وجودیک نقطه ثابت منحصربه فرد برای تگاشت های نامنبسط نقطه به نقطه مجانبی در فضای متری هذلولی گون محدب یکنواخت را بررسی می کنیم.

15 صفحه اول

قضایای نقطه ثابت و نقطه انتهایی برای نگاشت های مجموعه مقدار

در این پایانامه، ابتدا قضیه نقطه ثابت لفشتز را روی دو کلاس متفاوت از نگاشت های مجموعه مقدار غیرفشرده گسترش می دهیم که روی یک زیرمجموعه ی فضای باناخ که یک اجتماع موضعاً متناهی از مجموعه های بسته و محدب است تعریف شده اند. همچنین، یک جواب جزئی به حدس ناسبام برای نگاشت های مجموعه مقدار می دهیم. در ادامه از دیدگاه توپولوژیکی، وجود و یکتایی نقطه انتهایی را برای نگاشت های مجموعه مقدار به طور توپولوژیکی...

15 صفحه اول

نظریه نقطه ثابت برای توابع انقباضی مجموعه-مقدار

نظریه نقطه ثابت برای انقباض های مجموعه – مقدار توسط نادلر آغاز شد. این نظریه سپس توسط ریاضی دانان بسیاری بسط و گسترش یافت. در این پایان نامه مفهوم انقباض های مجموعه – مقدار در فضاهای متریک معرفی می شود و به بررسی شرایطی می پردازیم که لزوم وجود یک نقطه ثابت را برای چنین نگاشت هایی تضمین می کند.

15 صفحه اول

فرآیندهای تکراری برای نگاشت های شبه انقباضی

این پایان نامه شامل دو بخش می باشد. در بخش اول به معرفی مهم ترین الگوی تکرار که به الگوی تکرار ایشیکاوا معروف است می پردازیم. فرض کنید c یک زیر مجموعه ناتهی، بسته و محدب از یک فضای هیلبرت حقیقی h باشد به علاوه فرض کنید t_i:c?c، خانواده ای متناهی از نگاشت های شبه انقباضی و لیپ شیتس باشد. هدف ما در این بخش اثبات قضیه همگرایی قوی از روش ایشیکاوا به نقطه ثابت مشترک خانواده متناهی از نگاشت های شبه ا...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی و کامپیوتر خوانسار

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023