پیش شرط سازی و تجزیه دامنه برای حل معادلات دیفرانسیل با مشتقات جزیی
پایان نامه
- دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
- نویسنده اقبال محمدی
- استاد راهنما سعید عباس بندی داوود رستمی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
همواره در علوم مختلف با معادلاتی رو به رو هستیم که در بسیاری از موارد یافتن جواب تحلیلی برای آن ها مشکل و گاهی نیز مقدور نیست. لذا در این موارد سعی می شود که با استفاده از روش های عددی با کارایی مناسب، تقریب نزدیکی از جواب واقعی را به دست آوریم. در این میان روش های طیفی به طور قابل توجهی برای حل عددی معادلات دیفرانسیل و معادلات انتگرال مورد استفاده قرار می گیرند. این روش ها دارای کارایی و دقت کافی به همراه سرعت همگرایی بالا می باشند. یکی از روش های مهم طیفی که ما در این پایان نامه از آن برای به دست آوردن تقریب عددی بسیار نزدیک به جواب دقیق استفاده کرده ایم، روش شبه طیفی می باشد. در این پایان نامه ابتدا به معرفی یک پیش شرط و یک طرح تجزیه دامنه برای مشتق گیری به روش حاصل ضرب ماتریس مشتق در بردار مقادیر پرداخته و سپس این پیش شرط و طرح تجزیه دامنه را در حل معادلات دیفرانسیل با مشتقات معمولی و معاذلات با مشتقات جزیی با روش شبه طیفی به کار می بریم. واژه های کلیدی: روش شبه طیفی – ماتریس مشتق چبیشف- حاصل ضرب ماتریس مشتق در بردار مقادیر- پیش شرط – تجزیه دامنه – خطای گرد کردن – معادلات با مشتقات جزیی
منابع مشابه
سری های توانی با ضرایب تابعی و کاربرد آن در حل معادلات دیفرانسیل با مشتقات جزیی و با شرایط اولیه
متن کامل
بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملبررسی کارایی روش تجزیه آدومیان بهبود یافته برای حل برخی معادلات دیفرانسیل با مشتقات جزیی
پدیده های غیرخطی که در بسیاری از رشته های علمی ظاهر می شوند به وسیله ی معادلات دیفرانسیل جزئی قابل مدلسازی هستند. رده ی وسیعی از روش های تحلیلی و عددی برای حل این نوع معادلات استفاده شده اند. به عنوان مثال می توان از روش تجزیه آدومیان، روش تداخلی هموتوپی نام برد. روش تجزیه آدومیان اولین بار توسط جورج آدومیان ارائه و برای رده ی وسیعی از معادلات دیفرانسیل بکارگرفته شد. ثابت شده است این روش برای ح...
15 صفحه اولبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023