پایداری میانگین مربعی روشهای رونگه-کوتا برای معادلات دیفرانسیل تصادفی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس
  • نویسنده محمود باردل
  • استاد راهنما سید محمد حسینی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1388
چکیده

به عنوان تعمیم بسطهای برشی تیلور غیر تصادفی، بسطهای برشی مرتبه دوم در حالت اسکالر و چند بعدی بر حسب توانهای نمو متغیرها برای یک تابع به اندازه کافی هموار از جواب یک معادله دیفرانسیل تصادفی آورده شده است. روند کلی ساخت روشهای ضعیف برای حل معادلات دیفرانسیل تصادفی با نویز ضربی نشان داده شده است. همانند حالت غیر تصادفی، این روند عبارت است از مقایسه بسط تصادفی تقریب با روش تیلور متناظر. به این طریق شرایط مرتبه لازم برای اینکه روش رونگه-کوتای تصادفی دارای مرتبه دوم ضعیف باشد بدست آورده شده است و مثالهای صریح از تعمیم های خانواده کلاسیک روشهای رونگه-کوتای صریح دو مرحله ای مرتبه دوم نشان داده شده است. پایداری عددی روشهای رونگه-کوتای معرفی شده بررسی گردیده است. مطالعه، بر روی پایداری نسبت به گشتاور دوم (پایداری میانگین مربعی) متمرکز شده است. شکلهای مربوط به دامنه پایداری روشهای عددی نشان داده شده است. همچنین مثالهای عددی برای تایید مباحث نظری آورده شده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تجزیه و تحلیل پایداری میانگین مربعی دسته ای از روش های رونگ- کوتا برای حل دستگاه های معادلات دیفرانسیل تصادفی

برای تقریب گونه های خاص از معادلات دیفرانسیل تصادفی روش های عددی جدید و کارآ تری مورد نیاز است. در این رساله، ابتدا انواع مختلف مفاهیم پایداری برای معادلات دیفرانسیل تصادفی و همچنین روش های عددی برای تقریب آن ها را مورد مطالعه قرار می دهیم. سپس با مرور مفهوم سختی برای سیستم های تصادفی، روش های عددی ضعیف و قوی کارایی را برای تقریب این دسته از معادلات بیان می کنیم. در این راستا در تقریب های ضعیف،...

15 صفحه اول

بررسی روش های رانگ-کوتا برای معادلات دیفرانسیل تصادفی

در پایان نامه حاضر به مطالعه و بررسی خانواده کلی از روش های رانگ – کوتا تصادفی که نسبت به روش های موجود قبلی کارآمدتر است برای حل معادله دیفرانسیل تصادفی به صورت پرداخته می شود. شرایط مرتبه برای خانواده ای از روش های رانگ – کوتا تصادفی از مرتبه قوی یک با مینیمم ثابت خطا بیان شده و در ادامه خانواده ای از روش های رانگ – کوتا تصادفی از مرتبه قوی یک و نیم که اساس مولفه قطعی آن روش رانگ – کوتا کل...

15 صفحه اول

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

پایداری تعادل در معادلات دیفرانسیل غیر خطی

در این مقاله در مورد پایداری تعادل در سیستم معادلات دیفرانسیل غیر خطی بحث شده است ضمن چند قضیه و مثال معیارهایی برای تعیین اینکه آیا این معادلات در نقطه به خصوصی پایدارند یا نه داده شده اند دراین مطالعه دستگاههای اتونوموس و غیز اتونوموس هر دو مورد بررسی قرار گرفته اند .

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023