بررسی امکان برآورد رسوبات معلق توسط شبکه عصبی مصنوعی (ann) در حوزه آبخیز حیدر آباد کرمانشاه
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
- نویسنده خداکرم عظیمی فشی
- استاد راهنما محمد تقی دستورانی محمد رضا اختصاصی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
هر ساله هزاران تن خاک مناسب و با ارزش از سطح حوزه های آبخیز فرسایش می یابد و قسمتی از آن به صورت رسوبات معلق وارد شبکه هیدروگرافی می شود و از حوزه خارج می شود. یکی از نیازهای طراحی در پروژه های آبخیزداری و حفاظت آب و خاک، برآورد رسوبات معلق است. برای برآورد رسوبات معلق از مدل های مختلفی استفاده می شود. مدل ارائه شده مدلی برای برآورد رسوبات معلق می باشد. این مدل بر اساس شبکه عصبی مصنوعی ساخته شده و برای حوزه آبخیز حیدرآباد واقع در استان کرمانشاه استفاده شده است. انجام این تحقیق مبتنی بر جمع آوری و استفاده از داده های ایستگاه های هیدرومتری و هواشناسی بوده که ایستگاه هیدرومتری واقع در خروجی می باشد. بعد از بررسی صحت و پالایش داده ها، طول دوره آماری و تعداد داده های انتخاب شده به ترتیب برابر با 21 سال (1385-1364) و 223 داده است. از این میزان داده، 80% آن برای آموزش شبکه عصبی مصنوعی و 20% آن برای آزمون استفاده شده است. متغیر های ورودی مدل شامل دبی آب متناظر (همزمان با برداشت رسوب)، میانگین بارندگی 5 روزه و میانگین دبی 3 روزه می باشد. متغیر خروجی تنها شامل یک عامل یعنی دبی رسوب بوده است. تابع تبدیل متغیرهای ورودی به متغیرهای خروجی توسط روش شبکه عصبی مصنوعی از نوع تغذیه به جلو می باشد. ساختمان شبکه عصبی مورد استفاده شامل یک لایه ورودی، دولایه پنهان و یک لایه خروجی است. میزان عملکرد روش شبکه عصبی مصنوعی به وسیله پنج پارامتر آماری بررسی شده است. ضریب همبستگی که از فاز آزمون مدل شبکه عصبی و منحنی سنجه رسوب بدست آمده به ترتیب برابر با برابر با 91/0 و 82/0 است. مقایسه نتایج مدل شبکه عصبی با مدل سنجه رسوب حاکی از دقت بیشتر این مدل می باشد.
منابع مشابه
برآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)
متن کامل
برآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)
پدیدههای فرسایش و انتقال رسوب در رودخانهها یکی از مهمترین و پیچیدهترین موضوعات مهندسی رودخانه میباشد. این پدیدهها اثرات ویژهای روی شاخص های کیفی آب، کنش کف بستر و کناره های رودخانه داشته و همچنین خسارات جبران ناپذیری به طرح های عمرانی آب وارد مینماید. پیشبینی دقیق میزان رسوب رودخانهها اهمیت قابل توجهی در مدیریت منابع آب و طراحی و ساخت و همچنین برنامه ریزی در بهره برداری از سازههای آب...
متن کاملمقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...
متن کاملتخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان
Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...
متن کاملبررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
متن کاملشبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)
برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاک...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023