حل معادلات دیفرانسیل کسری با استفاده از موجک ها

پایان نامه
چکیده

آنالیز موجک یکی از دستاوردهای نسبتاً جدید و هیجان انگیز ریاضیات محض که مبتنی بر چندین دهه پژوهش است. امروزه کاربردهای مهمی در بسیاری از رشته های علوم و مهندسی یافته و امکانات جدیدی برای جنبه های ریاضی آن و نیز افزایش کاربردهایش فراهم شده است. در این پایان نامه ابتدا نحوه ساخت موجک ها را بررسی نموده و سپس با معرفی موجکی به نام موجک لژاندر، کاربرد آن را برای حل معادلات دیفرانسیل کسری نشان داده ایم. بدین منظور ابتدا مشتقات و انتگرال های کسری و همچنین ماتریس های عملیاتی انتگرال و حاصل ضرب برای موجک لژاندر را معرفی کرده و سپس با تبدیل معادلات دیفرانسیل کسری به یک دستگاه معادلات که حل آن بسیار ساده تر از حل معادلات دیفرانسیل کسری می باشد، جواب معادله دیفرانسیل کسری را به دست می آوریم.

منابع مشابه

حل معادلات دیفرانسیل کسری با روش تبدیل دیفرانسیل و حل معادلات انتگرو-دیفرانسیل کسری با استفاده از برخی موجک ها

چکیده بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرو-دیفرانسیل منجر می شوند، ولی در عمل تعداد کمی از این معادلات را می توان به روش تحلیلی حل کرد و جواب دقیق آن ها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم. در این پایان نامه از موجک های سینوس-کسینوس و ماتریس عملیاتی آن برای بدست آوردن جواب عددی معادلات انتگرو-دیفرانسیل غیرخطی از مرتبه کسری است...

15 صفحه اول

حل معادلات دیفرانسیل کسری و معادلات انتگرال با استفاده از برخی موجک ها

بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرال منجر می شوند، ولی در عمل تعداد کمی از این معادلا ت را می توان به روش تحلیلی حل کرد و جواب دقیق آنها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آنها استفاده می کنیم. پایان نامه مشتمل بر سه فصل است که به صورت زیر مرتب شده است. در فصل اول مقدمه ای کوتاه در مورد موجک ها، معادلات انتگرال و معادلات دیفرانسیل کسری و مفاهیم...

روش موجک برای حل معادلات دیفرانسیل کسری

در حال حاضر محاسبات کسری مورد توجه بسیاری از پژوهشگران قرار گرفته است. همچنین معادلات دیفرانسیل کسری در رشته های مختلف علوم مانند مکانیک، فیزیک، زیست شناسی و مهندسی به کار برده می شوند. به علت افزایش کاربرد این دسته از معادلات توجه ویژه ای به روش های عددی و دقیق معادلات دیفرانسیل کسری شده است. اخیرا استفاده از ماتریس های عملیاتی از مرتبه کسری برای حل معادلات دیفرانسیل مرتبه کسری توسعه پیدا کرده...

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

متن کامل

حل معادلات دیفرانسیل کسری با روش موجک لژاندر

در این پایان نامه ابتدا مطالب اولیه را معرفی می کنیم؛ سپس به بحث اصلی که در مورد شرایط کافی برای وجود و یکتایی جواب معادله ی دیفرانسیل کسری (d^? y(t)=f(t,y(t),d^? y(t) (1<??2 0<??1 , ) با شرایط اولیه ی y(0)=0 و y(0)=1 یا با شرایط مرزی y(0)=y_° و y(1)=y_1 می باشد می پردازیم و همچنین حل این نوع معادلات با روش موجک لژاندر را بیان می کنیم . برای ارائه ی حل عددی این دسته از معادلات لازم است که...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023