اعداد احاطه ای فراگیر تام در گرافها

پایان نامه
چکیده

فرض کنید گرافی با مجموعه رأس های و مجموعه یال های باشد. زیر مجموعه مجموعه احاطه گر است، هرگاه هر رأس در مجاور با حداقل یک رأس در باشد. عدد احاطه ای ? ? مینیمم کاردینال مجموعه های احاطه گر در است. مجموعه احاطه گر همبند از گراف را مجموعه احاطه گر فراگیر همبند - مجموعه در نامند هرگاه مجموعه احاطه گر همبند در نیز باشد. عدد احاطه ای فراگیر همبند? ? مینیمم کاردینال مجموعه های احاطه گر فراگیر همبند در است. در این پایان نامه? مفهوم عدد احاطه ای فراگیر همبند یک گراف را مورد مطالعه قرار داده و کرانهایی را برای بدست می آوریم. همچنین پارامترهای وابسته به آن را بررسی خواهیم کرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اعداد زیرتقسیم احاطه ای در گرافها

مجموعهs از رئوس گراف gرا یک مجوعه احاطه گر تام نامند هرگاه هر رأس درv(g) با حداقل یک رأس از s مجاور باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر تام را عدد احاطه ای نامیده و با?_(t ) (g) نشان می دهند. مجموعه s را یک مجموعه احاطه گر همبند مضاعف در g نامند هرگاه هر رأس درv(g)-s با حداقل یک رأس از s مجاور بوده و زیرگرافهای القایی g[s] و g[v-s] همبند باشند. مینیمم اندازه یک مجموعه احاطه گر همبند مضا...

15 صفحه اول

نکاتی در خصوص پایداری احاطه گر رومن علامتدارتام در گرافها

چکیده :فرض کنیم ‌ یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...

متن کامل

بررسی عدد احاطه ای رومی در گرافها

مجموعه های احاطه ‏‏گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی ‎$s$‎ از ‎$‎v(‎g)$‎ را یک مجموعه‎‏ ی احاطه ‏گر گویند هرگاه ‎$n[s]=v(g)$‎. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با ‎$gamma(g)$‎ ‎‏نمایش می دهند. تابع ‎$f:v(g) ightarrow {0,1‎, ‎2}$‎ را یک تابع احاطه گر رومی روی...

15 صفحه اول

عدد احاطه ای مهار شده در گرافها

فرض کنید g = (v;e) گرافی با مجموعه رئوس v و مجموعه یالهای e باشد. مجموعه d از از رئوس گراف g یک مجموعه احاطه گر است هرگاه هر عضو v-d با راسی از d مجاور باشد. مجموعه d از رئوس گراف g یک مجموعه احاطه گر مهار شده است هرگاه هر راسی که در d نیست با راسی از d و راسی از v-d مجاور باشد. عدد احاطه ای مهار شده g یعنیr(g) مینیمم اندازه یک مجموعه احاطه گر مهار شده در g است. در این پایان نامه کرانهایی برایr...

15 صفحه اول

احاطه کننده رنگی در گرافها

ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023