پوشش یک گروه توسط زیر گروه هایش
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
- نویسنده مریم فتحعلیان
- استاد راهنما مهری اخوان ملایری صدیقه محسنی رجایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
فرض کنیم g یک گروه باشد. یک پوشش برای گروه g خانواده ی از زیرگروه های g می باشد به طوری که . پوشش هایی که ما در نظر می گیریم ، خانواده ای متناهی از زیرگروه هاست. در این پایان نامه نتایجی را که در رابطه با گروه g از روی خواص زیرگروه های به دست می آید، بررسی می کنیم. ما مطالب زیر را اثبات می کنیم : (1) هر یک از ها گروه انگل می باشد، اگر و تنها اگر مجموعه ی عناصر انگل g زیرگروهی از اندیس متناهی را شامل شود. (2) اگر زیرگروه مشتق هر یک از ها متناهی باشد، آن گاه g متناهی است. (3) هر یک از ها دوری می باشد، اگر و تنها اگر g دوری یا متناهی باشد. (4) هر یک از ها آبلی می باشد، اگر و تنها اگر g مرکز در متناهی باشد. (5) اگر مجموعه ی همه ی جا به جا گرها توسط تعداد متناهی زیرگروه دوری پوشیده شود، آن گاه g متناهی یا دوری است.
منابع مشابه
شرط نیم ساده بودن و پوشش گروه ها توسط زیر گروه ها
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروههای سره ی g که اجتماع آنها برابرg است. پوششی را کاهش یافته می گوییم که هیچ یک از زیرمجموعه های سره ی آن، پوشش نباشند و همچنین پوششی را ماکسیمال می گوییم که همه ی اعضای آن زیرگروه ماکسیمال باشند. یک پوشش با n عضو برای عدد صحیح n>2، n- پوشش نامیده می شود. اشتراک همه ی اعضای پوشش را با d نشان داده و هرگاه ?core?_g d=d_g=1 باشد می گوییم...
15 صفحه اولشرط نیم ساده بودن و پوشش گروه ها توسط زیر گروه ها
یک پوشش برای گروه مفروض g، عبارت است از گردایه ای از زیرگروههای سره ی g که اجتماع آنها برابرg است. پوششی را کاهش یافته می گوییم که هیچ یک از زیرمجموعه های سره ی آن، پوشش نباشند و همچنین پوششی را ماکسیمال می گوییم که همه ی اعضای آن زیرگروه ماکسیمال باشند. یک پوشش با n عضو برای عدد صحیح n>2، n- پوشش نامیده می شود. اشتراک همه ی اعضای پوشش را با d نشان داده و هرگاه ?core?_g d=d_g=1 باشد می گوییم...
فضای زیر گروه های یک گروه فشرده
در این پایان نامه یک روند جدید برای بررسی ساختار گردایه ی زیرگروههای بسته ی یک گروه توپولوژیکی مطرح می شود. در این روش از مفهوم توپولوژیکی ابر فضاها استفاده می گردد. اگر چه این تئوری بیشتر برای گروههای فشرده بکار می رود اما بسیاری از نتایج آن برای گروههای هم متناهی نیز ثابت می شوند. فرض کنید x یک فضای توپولوژیکی و (k(x گردایه ی همه ی زیر مجموعه های فشرده ی نا تهی از x باشد. توپولوژی های مختلف...
15 صفحه اولپوشش کمینه یک گروه
موضوع اصلی این رساله مطالعه n- پوشش های یک گروه متناهی می باشد. یک n- پوشش گروه مفروض g طبق تعریف عبارت است از اجتماع یک گردایه n عضوی از زیرگروه های سره g به طوری که آن گردایه برابر g باشد و دارای هیچ زیر گردایه ای با این ویژگی نباشد. در این رساله عمدتا به مطالعه n- پوشش ها تا6≥n می پردازیم. این رساله مشتمل بر چهار فصل است:در فصل اول تعاریف و قضایای مورد نیاز در رابطه با گروه ها ذکر می شود. با...
15 صفحه اولبرخی خاصیت ها از زیر گروه n-مرکز یک گروه
در سال 1952 بئر مفهوم زیرگروه –nمرکز z(g,n) را بیان کرد که در آن z(g,n)= {a ? g ? (ax)n = an xn , (xa)n = xn an ? x ? g }. در این پایان نامه برای هر گروه g تمام اعداد صحیح m را به دست خواهیم آورد به طوری که z(g,m) z(g,n) ?. در پایان نیز مجموعه ای از اعداد صحیح s را به دست خواهیم آورد به طوری که .
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023