بررسی خودریختی های جابه جاشونده گروه
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
- نویسنده زینب کارگریان
- استاد راهنما مهری اخوان ملایری صدیقه محسنی رجایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
فرض کنیم g یک گروه باشد. گروه خودریختی های g را با (aut(g و گروه خودریختی های مرکزی g را با (autc(g نمایش می دهیم. خودریختی α از گروه g، یک خودریختی جابه جا شونده نامیده می شود هرگاه هرعضو گروه g با تصویرش تحت α جابه جا شود. مجموعه ی تمام خودریختی های جابه جا شونده را با a(g) نمایش می دهیم. در این پایان نامه خواهیم دید: 1) (a(g لزوماً یک زیرگروه از (aut(g نمی باشد. اما از ویژگی های جالبی برخوردار است. تحت شرایطی روی گروه g ، نه تنها (a(g یک زیرگروه از (aut(g می باشد بلکه (a(g)= aut(g . هم چنین وجود شرط ماکسیمال روی گروه های با مرکز بدیهی ایجاب می کند که (a(g بدیهی باشد. 2) یک خودریختی داخلی ، خودریختی جابه جا شونده است اگر و تنها اگر توسط یک عضو 2- انگل القا شده باشد. 3) گروه های ناآبلی وجود دارند که هر عضو گروه با تصویرش تحت هر درونریختی گروه جابه جا می شود . این گروه ها را e- گروه می نامیم. e- گروه ها به صورت حاصل ضرب نیم مستقیم محض تجزیه نمی شوند. 4) فرض کنیم g گروهی نا آبلی از مرتبه باشد که در آن p^3 یک عدد اول فرد است. اگر g شامل عضوی از مرتبه p^2 باشد آن گاه (a(g یک گروه آبلی مقدماتی از مرتبه p^2 است و در غیر این صورت (a(g یک گروه نا آبلی از مرتبه (p^2(p-1 می باشد.
منابع مشابه
بررسی خودریختی های جابه جاشونده برخی از گروه های متناهی
فرض کنیم g یک گروه باشد و aut(g) گروه خودریختی های آن باشد.گروه gرا a(g)-گروه گوییم هرگاه مجموعه ی خودریختی های جابه جاشونده ی آن، a(g)، زیرگروهی از aut(g) باشد. گروه g راac گروه نامیم هرگاه مرکزی ساز همه ی اعضای غیر مرکزی گروه g آبلی باشد. در این پایان نامه نتایج زیر مورد بررسی قرار می گیرد: (1) مشخص نمودن کمترین مرتبه ی یک p-گروه نا a(g) برای هر عدد اول p. (2) تعیین کوچک ترین مرتبه ی یک نا...
خودریختی p-گروه ها با زیرگروه جابه جاگر دوری
در این پایان نامه در مورد گروه خودریختی p-گروه های متناهی غیرآبلی ?-مولده g با زیرگروه جابه جاگر دوری برای عدد اول فرد p بحث می کنیم و با توجه به شرایط موجود روی گروه ها نمایشی برای گروه g ارائه می دهیم. سپس به محاسبه مرتبه های aut g و op(aut g) و inn g می پردازیم که در آن op(aut g) بزرگ ترین p-زیرگروه نرمال aut g است.
15 صفحه اولمقدمه ای بر گروه خودریختی های درخت های ریشه دار منتظم و برخی زیرگروههای آن
این مقاله به معرفی یکی از موضوع های واقع در نقطه همرس رشته های نظریه گروه، نظریه گراف، علوم کامپیوتر و توپولوژی می پردازد. هنگامی که ماکس دن در اوایل قرن بیستم، مساله کلمه در گروهها را مطرح و آن را به روش ترکیبیاتی برای گروههای رویه حل کرد، در واقع به طور ضمنی تداخل رشته های مزبور را نیز اعلام نمود. در این مقاله درباره این پرسش صحبت می کنیم که گروههایی بسازید که مساله کلمه آنها حل پذیر باشد. هد...
متن کاملمرکزساز و زیرگروه جابه جاگر یک خودریختی
هدف از این پایان نامه مطالعه تأثیر مرکزساز(?) c_g روی زیرگروه جابه جاگر [g, ?] است, به خصوص زمانی که g گروهی چنددوری یا دوآبلی و ? یک خودریختی از گروه g باشد. فرض کنید g یک گروه چنددوری و ? یک خودریختی از g باشد. در این پایان نامه نشان داده می شود که اگر ? از مرتبه ی 2 و (?) c_g متناهی باشد آنگاه g/[g, ? ] و ?[g,? ] ?^?نیز متناهی اند. همچنین ثابت می شود که اگرg...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023