قضیه ابرلین-شمولیان برای توپولوژی ضعیف عملگری
پایان نامه
- دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
- نویسنده فواد شکراللهی
- استاد راهنما علی آبکار عزیزالله عزیزی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1387
چکیده
چکیده ندارد.
منابع مشابه
برهانی برای قضیه کیلی - همیلتن
در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.
متن کاملقضیه نقطه ثابت برای نگاشت های زامفیرسکیوی ضعیف
در این پایان نامه، ابتدا فضای نقطه ثابت برای نگاشت های زامفیرسکیو معرفی و با قضایای نقطه ثابت باناخ، کانان و چاتریا مقایسه می شود. سپس ایده داگانجی و گراناس برای توسیع نگاشت های انقباضی را در نظر گرفته و نگاشت های زامفیرسکیوی ضعیف تعریف می شوند. در پایان روش پیوستار را روی نگاشت های زامفیرسکیوی ضعیف بررسی کرده و یک نتیجه هم مکانی بیان می شود.
15 صفحه اولبرهان دیگری برای قضیه اساسی جبر
هدف این مقاله ارائه اثبات دیگری از قضیه اساسی جبر بر مبنای خواص ماتریس های نمایی در فضای برداری نرمدار اقلیدسی است.
متن کاملبرهانی برای قضیه کیلی - همیلتن
در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.
متن کاملنگاشتهای نگهدارنده جفتهای عملگری باناخ روی جبرهای عملگری
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023