قضیه باناخ - استون

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساختار قضیه باناخ-استون

با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر...

حالت ناجابجایی قضیه باناخ - استون

قضیه باناخ - استون در حالت ناجابجایی می گوید « فرض کنیم x و y دو فضای فشرده و هاسدورف باشند اگریک یکریختی طولپا از(c(x به (c(y وجود داشته باشد آنگاه x و y یکسانریخت هستند».در این پایان نامه، قضیه باناخ – استون را به حالت ناجابجایی گسترش داده، به این مفهوم که *c-جبر لیمینال a توپولوژی فضای ایده آل اولیه ی آن را تعیین می کند.در این پایان نامه، قضیه باناخ - استون را به حالت غیرجابجایی گسترش داده، ...

استفان باناخ

شرح مختصر زندگانی و فعالیت های علمی استفان باناخ ریاضیدان لهستانی.

متن کامل

قضیه ی کملوس در فضاهای تابعی باناخ

قضیه ی کملوس در سال 1967 برای فضاهای l1(µ) توسط کملوس مطرح گردید و کاترجی در سال 1970 این قضیه را به فضاهای lpکه (1?p<2) تعمیم داد. لینارد در سال 1993 عکس قضیه ی کملوس را برای زیر مجموعه های محدب از ( l1(µمورد بررسی قرار داد. در سال 1996 بالدر و هس دو تعمیم از قضیه ی کملوس را بیان کردند و در سال 2010 دی و لینارد این قضیه را برای فضاهای تابعی باناخ نیز ثابت کردند. سرانجام قضیه ی کملوس در سال 2...

15 صفحه اول

مرزهای تعمیم یافته و قضایای از نوع باناخ-استون

در این رساله ابتدا برای فضاهای فشرده و هاوسدورف x وy به بررس طولپای خطی-حقیقی مانندt از زیر فضایa از c(x) بهc(y می پردازیم و در حالتی کهa یک جبریکنواخت روی x است، توصیفی برایt ارائه می دهیم. سپس نتایج بهتری را برای زمانی که t(a)دارای خواص بیشتری باشد ارائه می کنیم، بعلاوه نتایجی مشابه را برای حالتی که t یک طولپا از فضای تابعیa به روی زیر فضاهای حقیقی ازc(y) باشد که در شرط جداسازی خاصی صدق می کن...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023