میانگین پذیری ایده آلی دوگان دوم جبرهای باناخ
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم
- نویسنده هادی هادوی
- استاد راهنما سعید استادباشی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1387
چکیده
چکیده ندارد.
منابع مشابه
میانگین پذیری و میانگین پذیری ضعیف دوگان دوم جبرهای باناخ
یکی از نظریه ها که مورد علاقه ریاضیدانان جهت تحقیق و مطالعه در گرایش آنالیز هارمونیک می باشد، نظریهمیانگین پذیری جبرهای باناخ است. اگرaیک جبر باناخ باشد می دانیمa^(**)نیز به همراه دو نوع ضرب به نام ضرب های آرنز اول و آرنز دوم به یک جبر باناخ تبدیل می شود، حال این سوال مطرح می شود که آیا ارتباطی بین میانگین پذیری این دو جبر باناخ هست؟ یعنی اگر a میانگین پذیر باشد، آیا دوگان دوم آن میانگین پذی...
15 صفحه اولمیانگین پذیری ایده آلی از جبرهای باناخ
در این پایان نامه به مطالعه مفهوم میانگین پذیری ایده آلی روی جبرهای باناخ می پردازیم و این مفهوم را با دیگر مفاهیم میانگین پذیری مقایسه می کنیم.و نشان می دهیم این مفهوم با میانگین پذیری و میانگین پذیری ضعیف متفاوت است سپس چند ویژگی موروثی را بیان می کنیم.در ادامه مفهوم میانگین پذیری ایده آلی را روی جبرهای باناخ از گروههای موضعا فشرده مطالعه می کنیم. سرانجام مفهوم میانگین پذیری ایده آلی تقریبی ر...
15 صفحه اولمیانگین پذیری جبرهای باناخ دوگان
گوییم جبر باناخ a دوگان است اگر یک زیر مدول بسته a_* از a^* موجود باشد که a=?(a_*)?^*. رده جبرهای باناخ دوگان شامل تمام w^* جبرهاست و همچنین شامل تمام جبرهای m(g) برای گروههای موضعاً فشرده g و تمام جبرهای l(e) برای فضای باناخ بازتابی e است. ابتدا نشان میدهیم تحت شرایطی معین یک جبر باناخ دوگان میانگین پذیر، یک جبر باناخ ابر- میانگین پذیر و بنابراین متناهی البعد است. سپس دو مفهوم میانگین پذیری ، ...
15 صفحه اولمرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ
در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.
متن کاملمیانگین پذیری ومیانگین پذیری ضعیف دوگان دوم جبرهای باناخ
فرض کنیم a یک جبر باناخ باشدو **a دوگان دوم a با ضرب آرنز اول.همچنین فرض کنیم d از a به **a یک اشتقاق پیوسته باشد.در این پایان نامه تلاش میکنیم نشان دهیم که اگر دوگان چهارم a را به عنوان یک **a-دو مدول باناخ با ساختمان طبیعی مدولی در نظر بگیریم الحاق دوم d نیز اشتقاق است. همچنین تلاش میکنیم دریابیم که چه زمانی میانگین پذیری ضعیف **a, میانگین پذیری ضعیف a را نتیجه میدهد.
میانگین پذیری ضعیف روی دوگان دوم جبرهای باناخ
میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023