وجود جواب و یکتایی دسته ای از معادلات دیفرانسیل با مشتقات جزیی مراتب بالاتر در فضای مختلط

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

وجود جواب عمومی با شرایط مرزی معادلات دیفرانسیل با مشتقات جزئی در فضای مختلط

آنالیز شاخه ای از ریاضیات است که با اعداد حقیقی و مختلط و نیز توابع حقیقی و مختلط سر و کار داردو نظریه ی معادلات دیفرانسیل شاخه ای از آنالیز ریاضی است که اساس فیزیک نظری راتشکیل می دهد و معادلات دیفرانسیل با مشتقات جزئی مهمترین و جالب ترین بخش این نظریه است که در این مجموعه به بررسی آن خواهیم پرداخت.در این مجموعه روش های تحلیلی در آنالیز مختلط و کاربرد آنها برای حل معادلات دیفرانسیل با مشتقات ج...

15 صفحه اول

وجود و یکتایی جواب معادلات دیفرانسیل فازی مرتبه دوم

در این پایان نامه به حل معادلات دیفرانسیل فازی مرتبه دوم و اول پرداخته شده است

15 صفحه اول

تقریبی از جواب معادلات انتگرال-دیفرانسیل فردهلم با تأخیر زمانی از مراتب بالاتر

هدف اصلی در این رساله، حل معادلات انتگرال-دیفرانسیل فردهلم خطی با تأخیر زمانی به صورت باشرایط آمیخته با استفاده از روش های تیلور، هم محلی چبیشف و هم محلی لژاندر می باشد .که در آن تابع مجهول، ، و توابع معلوم در و همچنین تابع معلوم در و ضرایب ، ، و ها ثابت های معلوم می باشد. در روش بسط تیلور، جواب را به صورت سری تیلور قطع شده تقریب می زنیم. به دنبال ضرایب بسط تیلور می باشیم که در نهایت...

15 صفحه اول

وجود جواب عمومی، با شرایط مرزی معادلات دیفرانسیل با مشتقات جزئی در فضای سوبولف

در این پایان نامه سعی شده است تا با بررسی یکی از معادلات دیفرانسیل با مشتقات جزئی کاربردی، که معادل? ?w/(?z ? )=f(z,w,h)+g(z,w,w ? ) در فضای سوبولف می باشد، و اختیار شرایط اولی? مثلثاتی بر آن، دریچه ای جدید برای یافتن جواب های اختصاصی برای چنین معادلاتی، باز شود، که از این طریق در حالت خاص این معادله، معادلات دیگری از جمله معادل? شناخته شد? وکوآ، قابل حل خواهند بود. در فصل اول این پایان نامه ، ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023