شرایط غیر خطی برای عملگرهای ترکیبی وزن دار بین جبرهای لیپشیتس
پایان نامه
- دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر
- نویسنده علی انصاری اردلی
- استاد راهنما حکیمه ماهیار
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
چکیده ندارد.
منابع مشابه
شرایط کافی برای چگال بودن در جبرهای لیپشیتس توسیع یافته
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
متن کاملتوابع ناپیوسته از جبرهای لیپشیتس و عملگرهای حافظ مجزایی بین جبرهای کوچک لیپشیتس
در این پایان نامه با فرض این که (x,d) یک فضای متری فشرده باشد، ابتدا به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip?(x,d) برای 1 < ? ?0 و جبرهای کوچک لیپشیتس lip?(x,d) برای 1 < ? < می پردازیم. سپس ایده آل های ماکسیمال این جبر ها را بررسی می کنیم. هم چنین وجود نگاشت های خطی، همریختی ها و مشتق های ناپیوسته بر lip?(x,d) را اثبات می کنیم. در ادامه با فرض این که (x,d) و(y,?) دو فضای متری فشرده...
15 صفحه اولعملگرهای ترکیبی بر فضاهای هاردی وزن دار
این پایان نامه مشتمل بر چهار فصل می باشد. در فصل اول تعاریف و قضیه های پیش نیاز در فصل های بعدی آورده شده است. در فصل دوم به معرفی عملگرهای ترکیبی روی فضاهای باناخ شامل سریهای توانی صوری می پردازیم. همچنین فردهلم بودن و نرم اساسی و فشرده بودن عملگرهای ترکیبی را در چند قضیه بررسی می کنیم. در فصل سوم به دوری و ابردوری بودن عملگر ترکیبی بر فضاهای هاردی وزن دار پرداخته و عملگرهای ترکیبی دوری و ا...
15 صفحه اولعملگرهای ترکیبی موزون بین فضاهای باناخ توابع لیپشیتس بردار -مقدار
ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023