ضرب جابجاگرها و مرتبه گروه متناهی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه
- نویسنده الهام محمدی مسنن
- استاد راهنما هوشنگ بهروش
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
چکیده ندارد.
منابع مشابه
خودریختی های ضرب مستقیم گروه های متناهی
خودریختی گروه هایی که به شکل حاصلضرب مستقیم $n$ گروه تجزیه ناپذیر غیرآبلی متناهی هستند، را پیدا می کنیم. خودریختی ها را به صورت ماتریسهایی که درایه های آنها همریختی هایی بین $n$ عامل است نشان می دهیم.
گروه خود ریختی های حاصل ضرب مستقیم گروه های متناهی
هدف اصلی این پایان نامه بررسی گروه خودریختی های گروه هایی مانند gاست که به صورت حاصل ضرب مستقیم دو گروه متناهی مانند h و k هستند با این شرط که h و k عامل مستقیم مشترک نداشته باشند. در این رساله ابتدا مرتبه ی (aut(g را محاسبه نموده و سپس یک ساختار کلی برای (aut(g ارائه می دهیم. پس از آن در بخشی دیگر به بررسی آبلی بودن ( aut(gمی پردازیم و سپس با ارائه ی مثال هایی مطالب فوق را مورد مطالعه قرار می ...
مرتبه ی گروه خودریختی های یک گروه متناهی
فرض کنیم g یک گروه متناهی باشد بعلاوه تعداد عوامل اول موجود در مرتبه ی g مساوی 5 باشد بطوری که مرتبه ی g برای مرتبه یg برای p > 3، p5 نباشد. در این رساله ابتدا نشان می دهیم مرتبه ی گروه خودریختی های g عددی زوج است. علاوه بر این فرض کنیم g یک p- گروه متناهی باشد و aut(g) و gl(n , p) به ترتیب بیان کننده ی گروه خودریختی های گروه و گروه خطی عام از درجه ی n روی ?p باشند. اگر aut(g) =? gl(n ,p)آنگاه ...
15 صفحه اولحاصل ضرب کاراکترها و p-گروه های متناهی
به وضوح اگر ψ و χ سرشت هایی از گروه g باشند، آنگاه χ + ψ نیز سرشتی از گروه g است. همچنین با تعریف (χψ)(g) = χ(g)ψ(g) می توان یک تابع کلاسی جدید به دست آور، اما اثبات این که χψ سرشتی از گروه g است مقداری مشکل و غیربدیهی است. از مباحث مقدماتی در نظریه سرش ها می دانیم که می توان سرشت ها را به صورت ترکیبی خطی از سرشت های تحول ناپذیر نوشت. حال چون χψ سرشتی از گروه g است، پس می توان آن را به صورت تر...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023