کاربرد موجکهای متناوب در حل معادلات انتگرالی فردهلم نوع دوم

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد توابع متعامدمثلثی برای حل معادلات انتگرالی فردهلم نوع دوم و معادلات انتگرالی ولترا-فردهلم

در این پژوهش مجموعه ای از توابع مثلثی متعامد متمم را معرفی نموده ایم که از مجموعه توابع بلاک پالس بدست آمده اند. سپس ماتریس عملگر انتگرال در دامنه توابع مثلثی متعامد محاسبه شده و روابط آن ها با ماتریس عملگر انتگرال دامنه توابع بلاک پالس نشان داده شده است. از توابع مثلثی متعامد برای بدست آوردن جواب معادلات انتگرالی فردهلم خطی نوع دوم و معادلات انتگرالی ولترا - فردهلم غیر خطی استفاده شده است. با ...

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

متن کامل

حل عددی معادلات انتگرالی فردهلم خطی نوع دوم با استفاده از روش هم محلی سینک

ابتدا تقریب سینک را بررسی نموده سپس حل عددی معادلات انتگرال فردهلم نوع دوم را با استفاده از روش هم محلی سینک ارائه می دهیم. همچنین همگرایی تقریب سینک را برای این دسته از معادلات انتگرالی به صورت تحلیلی بررسی کرده و نشان می دهیم مرتبه همگرایی روش، نمایی و به صورت ((o(e^(-k?n است که k مستقل از n می باشد.

روشهای طیفی برای حل معادلات انتگرالی ولترای نوع دوم

با اینکه روشهای طیفی در حل معادلات دیفرانسیل به طور قابل ملاحظه ای مورد توجه قرار گرفته اند، تجربه اندکی در به کار بردن این روشها برای حل معادلات انتگرالی ولترا موجود است. در این پایان نامه روشهای طیفی را برای حل معادلات انتگرالی ولترای نوع دوم بکار می بریم. پایان نامه با مروری بر نظریه و کاربرد معادلات انتگرالی ولترا و مفاهیم مقدماتی روشهای طیفی آغاز می شود. سپس روشهای طیفی هم محلی و گالرکین...

15 صفحه اول

روش لتیس-نیستروم برای حل معادلات انتگرال فردهلم نوع دوم

چکیده ما در این رساله به حل معادلات انتگرال و انتگرال-دیفرانسیل با هسته پیچشی در فضای وزن دارکروبوف می پردازیم. این فضاها با پارامتر همواری ?>1 و وزن های ?_1??_2?? مشخص می شوند. وزن ?_j رفتار تابع را نسبت به متغیر j ام نشان می دهد. ما جواب معادله های اخیر را به روش لتیس-نیستروم و با استفاده از نقاط لتیس رتبه یک تقریب می زنیم. بدترین حالت خطا را در نرم سوپریمم بررسی می کنیم و نشان می دهیم که ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023