انتخاب متغیرهای ورودی در شناسایی سیستم ها و کاربرد آن در پیش بینی سری های زمانی

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

کاربرد قواعد کشفی و الگوریتم ژنتیک در ساخت مدل ARMA برای پیش بینی سری زمانی

برای پیش‏بینی سری ‏زمانی ابتدا باید مدل مناسبی از آن ساخته شود. تعیین ابعاد و تخمین پارامترهای مناسب برای مدل ARMA سری ‏زمانی، چالشی است که علاوه بر روش‏های متداول آماری، از طریق محاسبات هوشمند نیز به آن توجه شده است. در این مقاله استفاده از الگوریتم ژنتیک برای تخمین پارامترهای مدل ARMA و قواعد کشفی برای تعیین ابعاد مدل ارائه می‏شود. قواعد کشفی بر‌اساس ویژگی‏های سری ‏زمانی استخراج می‏شوند. داده...

متن کامل

کاربرد روش تحلیل سری زمانی در پیش بینی تکامل شورابه در دریاچه ارومیه

بررسی هیدروشیمی آب دریاچه ارومیه از سال 2007 تا 2015 با آنالیز180 نمونه آب انجام گرفت. این تحقیق قصد دارد با توجه به تغییرات میزان آنیون ها و کاتیون های اصلی در شورابه دریاچه ارومیه طی این دوره 9 ساله، با استفاده از روش آماری ARIMA به پیش بینی مقدار یون های موجود در دریاچه ارومیه برای شش سال آینده بپردازد. مهم ترین هدف از تجزیه و تحلیل سری های زمانی یافتن روند تغییرات و پیش بینی آینده بر مبنای ...

متن کامل

پیش بینی تقاضای پول در افق 1404 در ایران ( کاربرد الگوی سری زمانی )

آگاهی از میزان تقاضای پول آتی کشور بهمنظور تعیین اولویتها و انتخاب سیاست پولی در راستای مساعدت به رشد و توسعة اقتصادی، ضروری است. پژوهش حاضر، میزان تقاضا برای پول در ایران را در افق 1404 با استفاده از الگوهای سری زمانی VECM، VAR و ARIMA، با بکارگیری دادههای سالهای 1355 تا 1385، پیشبینی میکند. نتایج نشان میدهد که الگوی ARIMA با میزان خطای 1/3 درصد، مناسبترین پیشبینی را برای تقاضای پول دارد. بر ا...

متن کامل

کاربرد روش پنجره لغزان برای انتخاب ساختار شبکه عصبی با تاخیر زمانی در پیش بینی سری های زمانی مالی

چکیده شبکه عصبی با تاخیر زمانی، یک ابزار مدل سازی برگرفته از محاسبات هوشمند است که در کنار روش های کلاسیک برای پیش بینی سری های زمانی مالی بکار گرفته می شود. این مدل اغلب در مواردی که از سری زمانی داده های فراوان، اما از ساختار مدل اطلاعات محدود وجود دارد، استفاده می شود، از این رو انتخاب ساختار و ارزیابی آن خود یک چالش است.در این مقاله یک مدل مبتنی بر شبکه عصبی با تاخیر زمانی برای پیش بینی مع...

متن کامل

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تهران

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023