مدل سازی فرآیند بارش-رواناب با استفاده از ترکیب مدل غیر خطی شبکه عصبی و مدل خطی سری زمانی : مطالعه موردی (حوضه اهرچای)

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی

برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روش‌‌های بسیاری وجود دارد که یکی از چشم‌گیرترین آن‌‌ها استفاده از شبکه‌‌های عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوب‌شرق ایران ارائه شده است. ظهور تئوری‌های توانمند مانند منطق فازی و شبکه‌‌های عصبی مصنوعی(ANN)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفت...

متن کامل

شبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)

برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاک...

متن کامل

شبیه سازی فرآیند بارش- رواناب در حوضه آبریز قره سو با استفاده از مدل WMS

برآورد رواناب حاصل از بارش­های جوی اهمیت خاصی در مطالعات هیدرولوژی، مدیریت حوضه­های آبخیز و حفاظت آب و خاک دارد. استفاده از مدل­های شبیه­ساز بارش- رواناب همانند WMS در سال­های اخیر گسترش فراوانی یافته است. این مدل با تلفیق امکانات GIS و مدل­های هیدرولوژیکی رایج به ابزاری قدرتمند برای شبیه­سازی فرآیندهای هیدرولوژیکی حوضه­های آبخیز تبدیل شده است. در این مطالعه برای پیش بینی سیلاب حاصل از بارش حوض...

متن کامل

بررسی دقت مدل مفهومی HMS-SMA و مدل دو خطی سری زمانی در پیش بینی رواناب روزانه مطالعه موردی: (حوضه مارون ایستگاه هیدرومتری ایدنک)

پیش‌بینی رواناب به‌منظور بهره‌برداری مؤثر از مخازن کنترل سیل و سامانه‌های سیل بند خاکی ضروری می‌باشد. پیش‌بینی‌ها همچنین با برآورد زمان و محدوده خسارات مورد انتظار یا شرایط مخرب سیل، بهره‌برداری اضطراری را امکان پذیر میسازند. پیش‌بینی‌ها بر مبنای شرایط هواشناسی و هیدرولوژیکی اخیردر حوضه هستندو ممکن است شرایط هواشناسی پیش‌بینی‌شده در آینده را نیز شامل شوند.اگرچه اکثر کاربردها در زمینه پیش‌بینی س...

متن کامل

آزمون حافظه سیگنال سری زمانی و شبیه‌سازی فرایند بارش-رواناب با استفاده از مدل‌های شبکه عصبی و ترکیب موجک-عصبی

‌در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرم‌آباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرم‌آباد در بازه زمانی سال‌های 1370 تا 1393 برابر با 0.8 به‌دست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با به‌کارگیر...

متن کامل

پیش بینی جریان ماهانه رودخانه با استفاده از ترکیب مدل های خطی سری زمانی و شبکه های بیزین (مطالعه موردی: رودخانه بختیاری)

یکی از مسائل مهم در مدیریت منابع آب، تهیه و توسعه مدل‌های مناسب به منظور پیش‌بینی دقیق‌تر فرآیند جریان رودخانه‌ها می‌-باشد. بدین منظور در مطالعه حاضر برای پیش‌بینی جریان ماهانه رودخانه بختیاری، در دوره آماری 1395-1334، از مدل‌های سری-زمانی خطی (ARMA)، مدل هوشمند شبکه بیزین (BN) و مدل تلفیقی BN-ARMA استفاده شد. عملکرد مدل‌های توسعه یافته براساس شاخص‌های آماری جذر میانگین مربعات خطا (RMSE)، ضریب ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023