روش دو گامی صریح p- پایدار برای حل عددی معادلات دیفرانسیل مرتبه دوم با مقادیر اولیه
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
- نویسنده مصطفی عفتی قشلاق
- استاد راهنما محمد یعقوب رحیمی اردبیلی غلامرضا حجتی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1386
چکیده
چکیده ندارد.
منابع مشابه
بررسی روش دوگامی صریح p-پایدار در حل عددی معادله دیفرانسیل مرتبه دوم معمولی با شرایط اولیه
چکیده ندارد.
15 صفحه اولبهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد
در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.
متن کاملروش های چند گامی صریح همسان برای حل عددی معادلات دیفرانسیل معمولی
با قراردادن یک شرط اضافی، یک زیر خانواده از روش های با پایداری صفر بهینه مشخص شده اند که فوق همگرایی از مرتبه p=s+1 دارند.شرط جدید این امکان را به ما میدهد که تعداد ضرایب در یک جستجوی عددی کاهش دهد.
15 صفحه اولروش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
متن کاملبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023