روشهای گراف تئوریکی جبری برای ترتیب گرهی مدلهای اجزای محدود
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران
- نویسنده رسول رحمانی زرنق
- استاد راهنما علی کاوه
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1380
چکیده
کاربرد روش اجزا محدود در بسیاری از مسائل تحلیل و طراحی مهندسی و تحقیقاتی، رو به گسترش است و انتظار می رود در سالهای آینده نیز مورد استفاده بسیاری از مهندسان و محققان قرار گیرد. روش اجزای محدود برای تحلیل سازه ها، یک یک روش عددی قدرتمندی است که برای تحلیل مسایل پیچیده سازه ای مانند شبکه های نامنظم با بازشوهای داخلی و گوشه های نامنظم مورد استفاده قرار می گیرد. برای حصول به نتایج بهتر و دقیق تر مدل اجزای محدود با تعداد گره ها و المانهای زیاد اختیار می گردد و امروزه اجزایی با اضلاع متعدد و گره های میانی زیاد بطور گسترده ای مورد استفاده می گیرد. سازه های فضا کار نیز که کاربرد گسترده ای در سطح جهانی برای پوشش دهانه های بزرگ و پوشش سطوح با معماری خاص دارند، دارای المانها و گره های زیادی می باشند. برای سازه های علمی بزرگ بین سی تا پنجاه درصد زمان اجرای رایانه ای برای حل دستگاه معادلات مربوط به تحلیل صرف می شود . در حل مسایل بهینه یابی سازه ای و دینامیکی و مسایل غیر خطی این میزان به شدت افزایش می یابد بنابراین طبیعی است که کوشش شود تا هزینه یک محاسبه رایانه ای که تابعی از زمان اجرا و حافظه اطلاعات رایانه ای است کاهش یابد. مشخصه های بهینگی ماتریسهای اتصالی عبارت است از عرض نوار ماتریس و یا پروفیل آن که با توجه به توضیحات بالا در مورد اجزا محدود و سازه های فضا کار پر عضو تغییرات قابل توجهی در عرض نوار تک تک ردیف ها صورت می گیرد و در نتیجه طبیعی است که دنبال روشهایی بود که هم در محاسبات و هم در نحوه ذخیره سازی آنها بتوان این تغییرات را منعکس کرد. در این پایان نامه پس از معرفی روش تغییر مکانها (سختی) در تحلیل اجزا محدود و سازه ها تبدیلات توپولوژیکی مدلهای اجرا محدود که توسط دکتر کاوه تعریف شده اند برای استفاده در شماره گذاری بهینه معرفی می شوند. هدف اصلی ترتیب گرهی در اجزای محدود پر عضو است که این کار با استفاده از روشهای گراف تئوریکی جبری انجام می شود. نحوه قرار گیری درایه های غیرصفر ماتریس سختی و پراکندگی آنها در ماتریسهای اتصالی یا به عبارت دیگر الگوی ماتریس سنتی، زمان اجرای برنامه، عرض نوار و پروفیل ماتریس سفتی برای مثالها ارائه شده اند. قابل ذکر است که در مراحل مختلف پایان نامه برنامه های رایانه ای موثری نوشته شده اند مانند استخراج توپولوژی سازه از فایل ترسیمی در نرم افزار auto cad 14 و آماده سازی آن برای تحلیل، مدل کردن سازه توسط تبدیلات توپولوژیکی معرفی شده توسط دکتر کاوه، ترتیب گرهی با استفاده از ماتریس لاپلاسین مکمل lc گراف در هر کدام از مدلها انجام شده است.
منابع مشابه
بهینه سازی عرض نوار ماتریس معرف مدلهای اجزاء محدود، بااستفاده از تئوری گراف جبری
یکی از قویترین تئوریهایی که در رابطه با آنالیز مدلهای اجزاءمحدود، بکار گرفته شده، تئوری گراف و تئوری گراف جبری است که با تشکیل گراف مربوط به یک مدل اجزاء محدود، ترتیب گرهی مناسب ، به منظور کاهش عرض نوار ماتریسهای نواری و با روشهای مختلف توپولوژیکی و گراف تئوریکی جبری، روی آن صورت می پذیرد. در این پایان نامه، از 9 گراف برای اعمال روشهای ترتیب گرهی روی مدلهای اجزاءمحدود استفاده گردیده است و برای ...
15 صفحه اولکاربرد روش اجزای محدود در دامنة زمان برای تعیین مسیرهای بهینة پرواز فضاپیما با رانش محدود
در این مقاله، مسیرهای بهینه حرکت هر فضاپیما تحت رانش محدود با بهکارگیری روش اجزای محدود در دامنة زمان مدلسازی و ارائه شده است. در ابتدا، با توجه به معادلة گرانش نیوتن، معادلات فضای حالت حرکت فضاپیما با رانش محدود ارائه شده و سپس با در نظر گرفتن تابع عملکرد حداقل زمان مسئلة کنترل بهینه تنظیم شده است. همچنین با گسستهسازی مسئله در دامنة زمان و استفاده از روش حساب تغییرات، فرم اجزای محدود معادلا...
متن کاملهندسه جبری مدلهای فیلوژنتیک
فیلوژنتیک شاخه ای از علم زیست شناسی است که با استفاده از داده های موجود ، تحول مولکولی را استنباط می کند. از میان مدلهای ریاضیاتی که برای تسهیل این استنباط مورد استفاده قرار می گیرد ، مدلهای آماری کاربرد وسیع تری دارند. در این گونه از مدلها می توان فرض کرد که تحول مولکولی به عنوان یک فرایند احتمالاتی در امتداد یک درخت ریشه دار که تنها برگهای آن قابل مشاهده است، اتفاق می افتد. برای پارامتری سا...
15 صفحه اولگراف های جبری متعدی
فرض کنید n و k دو عدد صحیح باشند به طوری که n>k>0. در این پایان نامه به معرفی یک رده جدید از گراف ها، با عنوان h(n,k) که شامل ابرمکعب ها و برخی از گراف های معروف است، می پردازیم. برای نمونه گراف های جانسون، گراف های نسر و گراف های پترسن، زیرگراف های h(n,k) هستند. برخی خواص جبری و توپولوژیکی گراف های h(n,k) را ارائه می کنیم. برای مثال، h(n,k) یک گراف کیلی است، خودریختی گروهی h(n,k)شامل یک زیرگر...
15 صفحه اولگراف های جبری
هدف از نگارش این پایان نامه مطالعه عمل نیم گروه های معکوس روی گراف ها است . این پایان نامه مشتمل بر چهار فصل می باشد . در فصل اول با مفاهیم مقدماتی مورد نیاز اشنا می شویم. در فصل دوم نیم گروه های معکوس و خواص ان بررسی می شود. در فصل سوم با عمل جزئی نیم گروه معکوس s روی یک مجموعه اشنا می شویم. به مجموعه حاصل که به این عمل مجهز شده است یک s - عمل جزئی می گوییم. در فصل چهارم با تعمیم این بحث به گر...
15 صفحه اولمروری بر روشهای ارائه شده برای جانمایی بهینة اجزای ماهواره
طراحی جانمایی یک سامانه پیچیده مانند ماهواره یا هواپیما دارای پیچیدگی بسیاری می باشد. این موضوع به عنوان مسئله کاملا نامعین با زمان از لحاظ پیچیدگی محاسباتی شناخته شده است. مشکل اصلی در مسئله جانمایی فرموله نمودن به صورت ریاضی، استراتژی حل و رویکردهای عملی در تجربه مهندسی است. این مقاله تحقیقات انجام گرفته شده جهت خودکار نمودن فرایند طراحی جانمایی در ماهواره را در 10 سال اخیر بررسی می نماید و ر...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023