حاصلضرب x - گروهها

پایان نامه
چکیده

رساله حاضر در شش فصل تنظیم گردیده است . نتایج بدست آمده در هر فصل توسط یک قضیه اساسی بیان شده و در فصل مزبور هدایت می شوند. معمولا فصول را با بیان چند حدس و احیانا با طرح چند مسئله تحقیقی به پایان برده ایم. در فصل اول پیش نیازهای لازم در سراسر این رساله را فراهم آورده ایم. بدیهی است که برخی از مطالب این فصل عمومی بوده و در اکثر منابع قابل دسترس مانند [49]، [50] و [51] پیدا می شوند. بدین منظور برای اثبات برخی از احکام و قضایا، منابع موردنظر را ارجاع داده ایم. در فصل دوم ابتدا خواص مقدماتی گروههای تجزیه شدنی را مورد بررسی قرار داده ایم که اکثر این مطالب را در برگرفته از منابع [3]، [19]، [56] و [61] می باشند در این فصل به بررسی سئوالات زیر می پردازیم و در حالتهایی خاص به آنها پاسخ می گوئیم. سئوال 1: چه زیرگروههایی از گروه gab تجزیه شدنی است ؟ سئوال 2: اگر گروه gab حاصلضرب دو زیرگروه a و b باشد و h در g زیرنرمال است . در ادامه این فصل به بررسی این سئوال پرداخته ایم که اگر h زیرگروهی از گروه gab باشد به قسمی که h زیرنرمال در a و b است آنگاه آیا h در g زیرنرمال است ؟ در فصل ششم نشان داده ایم که متناظر با هر تجزیه سه تایی به شکل gabakbk که در آن a، b و k آبلی و k نرمال است ، حلقه ای رادیکال موجود است و به عکس متناظر با هر حلقه رادیکال تجزیه ای سه تایی به شکل فوق موجود است . در انتهای این فصل به بررسی رابطه نمای a و b با نمای گروه تجزیه شده gab پرداخته ایم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حاصلضرب گروهها

یکی از موضوعات جالب توجه در نظریه گروهها، بحث در مورد گروههای تجزیه پذیر می باشد. گروه ‏‎g‎‏ را تجزیه پذیر گویند اگر زیر گروههای محض از ‏‎g‎‏ مانند ‏‎b,a‎‏ موجود باشند بطوریکه ‏‎g=ab‎‏. هر گاه ‏‎b,a‎‏ زیرگروههای ماکسیمال ‏‎g‎‏ باشند این تجزیه را ماکسیمال می نامند. نمونه های بسیاری از گروههایی که تجزیه پذیر نیستند وجود دارد. اگرچه تجزیه ماکسیمال کلیه گروههای ساده متناهی پیدا شده اند ولی تا زمان ...

15 صفحه اول

زیرگروههای پرونرمال و پادنرمال یک حاصلضرب مستقیم گروهها

زیرگروه h از گروه متناهی g را پرونرمال گویند هرگاه برای هر عضو g مانند g، زیرگروههای h و h^g، در زیرگروه تولید شده توسط h و h^g، مزدوج باشند.این مفهوم برآمده از ویژگیهای اساسی تزویج و نقش پررنگ سیلوها در گروههای متناهی بوده و به یک ویژگی مهم تبدیل گشته است. در گروههای حلپذیر متناهی علاوه بر سیلو زیرگروهها، هال زیرگروهها و بطور کلی انژکتورها و پروژکتورها زیرگروههایی پرونرمال هستند. به همین دلیل...

15 صفحه اول

نظریه گروهها: سرگذشت و سرنوشت

در پی تلاش چندین هزار ساله بشر برای حل معادلات چندجمله‌ای مفهوم ‎{گروه}‎ در قرن نوزدهم میلادی شکل گرفت و بلافاصله مشاهده شد که گروه‌ها در دیگر شاخه‌ها از جمله نظریه اعداد، هندسه، معادلات دیفرانسیل، فیزیک و ‎$‎‎ldots$‎ نیز حضور دارند. کشف کاربردهای گروه‌ها در علوم مختلف، روز به روز بر اهمیت مطالعه‌ی آنها افزود و رده‌بندی گروه‌های متناهی به یکی از اهداف بزرگ ریاضیدانان تبدیل شد. بالاخره در اوایل ...

متن کامل

حاصلضرب های بلاشکه درونیاب

همانطور که فرستمان نشان داد، هر تابع اینر، حد یکنواخت دنباله ای از حاصلضرب های بلاشکه است ، در، مارشال نشان داده است هر تابع تحلیلی و کراندار روی d، حد یکنواخت دنباله ای از ترکیب های خطی حاصلضربهای بلاشکه است . در حقیقت مارشال نشان داد فضای خطی تولید شده توسط حاصلضرب های بلاشکه در h چگال است . گارنت با در نظر گرفتن کار مارشال، سوال مشابهی در مورد تعیین بستار فضای خطی تولید شده توسط حالضرب های ب...

15 صفحه اول

نرخ رشد گروهها

گروه g ساده است ، اگر و فقط اگر زیر گروه قطری gxg، یک زیر گروه ماکسیمال باشد. این خصوصیت جالب بسیار ساده اثبات می شود و انگیزه ای برای پاسخ به این سوال ایجاد می کند که چگونه می توان همه زیرگروههای ماکسیمال gn را تعیین کرد، در حالی که منظور از gn، حاصلضرب مستقیم n نسخه از g می باشد. هدف اول این پایان نامه پاسخ دادن به این سوال می باشد. بخصوص نشان خواهیم داد که اگر g یک گروه کامل باشد، آنگاه هر ز...

15 صفحه اول

توپوسها و نیم گروهها

در این پایان نامه یک نمایش نیم گروهی از توپوس طبقه بندی کننده ارایه میشود بدین منظور یک رسته ی بزرگتر از رسته نیم گروههای معکوس و پیش هم ریختی ها در نظر میگیریم که اشیا آن را *-نیمگروه چپ مینامیم و ریختارهای بین آنها را تعریف میکنیم در ادامه ثابت میکنیم که توپوس طبقه بندی کننده نظیر یک نیمگروه معکوس با رسته خارج قسمتی ازریختارهای اتال روی همان نیمگروه معکوس هم ارزند.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023