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Abstract

Sensitive and precise voltammetric methods for the determination of trace amounts of

furaldehydes, mainly as furfural (F) and 5-hydroxymethyl-2-furaldehyde (HMF), in waste

waters and other matrices is described. Determination of total furaldehyde at < μg g-1

levels in alkaline buffered aqueous media was individually investigated. By the use of

ordinary SWV and adsorptive square wave stripping voltammetry (Ad-SWSV), the

detection limits for determination of F and HMF found to be 400 and 10 ng g-1,

respectively. At a 1.0 μg g-1 level of furfural in sample, the relative standard deviation (n =

4) was 2.79%. The use of Ad-SWSV of F and HMF, after their in situ derivatization with

trimethylaminoacetohydrazide chloride (Girard’s reagent T) at a static mercury drop

electrode (SMDE) in NH3-NH4Cl buffer of pH 9.5, resulted in a limit of detection of 10 ng

g-1 for the resolved peaks of HMF and F. The results obtained by the proposed method for

the real samples were compared with the corresponding results from UV-

spectrophotometry and HPLC experiments in various matrices.

A 2-furaldehyde-selective PVC-membrane electrode was designed based on the host-

guest interaction between tetrabenzyl ether Calix[4]arene, as an ionophore, and a lipophilic

hydrazone derivative generated in situ from reaction of 2-furaldehyde and Girard’s reagent

T. At a pH of 9.2, the electrode exhibited a Nernstian response over the 2-furaldehyde

concentration range of (5.0 × 10-5) - (1.0 × 10-1) M. The electrode found to be chemically

inert and of adequate stability with a response time of 15 s with a good reproducibility (±

0.2 mV), and could be used for a long working lifetime. In order to improve the minimum

detectable concentration of 2-furaldehyde, further studies have been performed using a

coated graphite electrode and coated platinum and gold disks. Some analytical aspects of

adsorptive square wave voltammetry have also been presented in order to elucidate the

adduct formation between 2-furaldehyde and Girard’s reagent T. The interfering effects of

some Na+, K+, NH4
+, formaldehyde, 5-hydroxymethyl 2-furaldehyde (HMF), excess of

Girard’s reagent T and organic solvents such as isopropyl alcohol and N,N-

dimethylformamide on the sensor’s response have been studied. The viability of using the

electrode for the trace determination of 2-furaldehyde in several Iranian oil refinery

wastewater samples was also demonstrated. The results obtained from the developed

method for real samples were compared with those from UV-spectrophotometric and high-

performance liquid chromatographic experiments.



Three types of ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate

([EMIM][BF4]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][OTf]),

and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyrr][NTf2])

were prepared and a variety of their fundamental properties such as kinematic () and

dynamic () viscosities, thermal stability, surface tension ( ), refractive index (nD), pH and

density () were investigated as a function of temperature. The coefficients of thermal

expansion (p) of the ionic liquids were also calculated from the experimental values of the

density in different temperatures. Electrochemical stability of the ionic liquids (as

electrolytes for voltammetric aspects) was also studied at glassy carbon electrode (GCE).

The measurements were performed in a double wall three electrode cell, applying Pt wire as

a quasi-reference electrode. The results showed an ideal wide range of potential windows for

studies of electrochemical behavior of some species such as furaldehydes in the lipophilic

and hydrophilic ionic liquids.

In one another work, the three selected ionic liquids, 1-ethyl-3-methylimidazolium

tetrafluoroborate, [EMIM][BF4], 1-butyl-3-methylimidazolium trifluoromethanesulfonate,

[BMIM][OTf], and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide

[bmpyrr][NTf2] were studied as electrolytes in electroanalytical quantification of 2-

furaldehyde using square wave and differential pulse voltammetries. On applying a

cathodic scan, a well-defined 2-electron wave was observed corresponding to the reduction

of 2-furaldehyde to furfuryl alcohol. The electrochemical stability of the ionic liquids as

electrolytes for analytical aspects and electrokinetic studies were investigated using a

glassy carbon electrode (GCE). The measurements were carried out in a designed double

wall three-electrode cell, using two platinum wires as the quasi-reference and counter

electrodes. Differential pulse voltammetry was found to be the most sensitive method at

GCE. The detection limits of 1.4, 19.0 and 2.5 g g-1 were obtained for the determination

of 2-furaldehyde in [EMIM][BF4], [BMIM][OTf] and [BMPyrr][NTf2], respectively. At a

concentration of 50 g g-1, the maximum relative standard deviation (n = 3) was 4.9%. The

effect of water on the potential window and waveforms was also investigated in the ionic

liquids studied. The proposed method was ideally suited for trace determination of 2-

furaldehyde, especially in oil matrices.

Chemometric methods were also used in simultaneous determination of some

petroleum pollutants with nearly similar chemical structures. Ant colony optimization

(ACO) is a population-based metaheuristic that can be used to find approximate solutions



to difficult optimization problems. The solution process is stochastic and is biased by a

pheromone model, which is used to probabilistically sample the search space. ACO is a

relatively novel technique for solving hard combinatorial optimization problems. The

inspiring source of ACO is the foraging behavior of real ants. Since wavelength selection

is a strategy used for improving the quality of calibration methods, we investigated

simultaneous spectrophotometric determination of two furaldehydes, namely, 2-

furaldehyde (F) and 5-hydroxymethyl-2-furaldehyde (HMF), using ant colony

optimization-partial least squares (ACO-PLS) regression. Predictive abilities of ACO in

wavelength selection process was examined for spectrophotometric analysis of these

species, and was compared with other regression methods, such as CLS, PCR, PLS, and

GA-PLS. The ACO-PLS showed superiority over other methods regarding to the

prediction ability of the resulted model and providing useful information about the

chemical system. The proposed method was also successful when applied to the

determination of furaldehydes in oil refinery waste waters.

A sensitive and reliable method based on static headspace-extraction (HS) followed by

GC/MS was developed for the qualitative and quantitative analysis of methyl tert-

butylether (MTBE) and formaldehyde in water matrices. To enhance the extraction

capability of the HS, the extraction parameters such as extraction temperature, extraction

time, the ratio of headspace volume to sample volume and sodium chloride concentration

were optimized. Good linearity was verified in a range of 5-10000 g/L for MTBE

(r=0.9998), while that for HCHO was 5-500 g/L (r=0.9996). Detection limits for MTBE

and HCHO were 0.2 g/L and 0.3 g/L, respectively. Best results were obtained when the

analyzed water samples were heated to 70 oC for 20 min, with a sample volume 10 mL, in

a 20 mL vial, while 30% (w/v) NaCl was used to saturate the samples. The proposed

analytical method was successfully used for the quantification of selected analytes in

environmental water samples.

MTBE is widely used as an gasoline oxygenate and octane number enhancer for more

complete combustion in order to reduce the air pollution caused by motor vehicle exhaust.

The possible adverse effects of MTBE on human health are a major public concern.

However, information on the metabolism of MTBE in human tissues is lacking. The

present study demonstrates that human liver is active in metabolizing MTBE to tert-butyl

alcohol (TBA) and formaldehyde, major circulating metabolites and markers for exposure

to MTBE. CYP2A6 is known to be constitutively expressed in human livers and



metabolism of gasoline ethers is catalyzed by this enzyme. The present study used

CYP2A6 to assess the contribution of 2A6 to the metabolism of MTBE. In comparison

with literature, our results clearly demonstrate that 2A6 plays a significant role in the

metabolism of MTBE.

When a degradation process is performed, the use of analytical techniques to identify

and quantify the degradation products is an aspect of interest. Subsequently, analytical

techniques which give structural information of intermediates have special interest when a

pathway is required. Although instrumental techniques used in previous works like HS

GC-FID and P&T GC-MS, were not sufficient for proposing a mechanism, this work is a

proof to previous probable pathways by using HPLC (for monitoring aldehydes and

ketons) and HS-GC-MS (for TBA, alcohols and other intermediates).



چکیده

بصورت(روشهاي ولتامتري حساس و دقیقی براي تعیین مقادیر جزئی فورالدهیدها - عمدتاً

و در پسابهاي نفتی، مایعات دارویی و محصولات غذایی )فورفورال-2متیل هیدروکسی-5فورفورال

آبی بافري شده در هايبویژه در محیط1-تعیین فورالدهیدها در ترازهاي زیر .تشریح گردیده است

pHبا استفاده از تکنیکهاي ولتامتري موج مربعی .هاي قلیایی مورد مطالعه قرار گرفته است(SWV)

1-به ترتیب  F،HMF، حدود تشخیص براي تعیین (Ad-SWSV)و ولتامتري جذبی موج مربعی 

و400
آمدند110- تراز.بدست در

گیري انحراف استاندارد نسبی براي چهار اندازه11-

(n=4)،%79/2استفاده از تکنیک .بودAd-SWSV بعد از مشتق سازي فورالدهیدها توسط معرف

T(Girardsاردجر reagent T) در سطح الکترود قطره جیوه ایستا امکان دسترسی به حد تشخیص

ا110- نموده فراهم و(F)علاوه بر آن سبب جداسازي کامل پیکهاي احیاء فورفورال .سترا

pHدر(HMF)هیدروکسی متیل فورفورال  بافر(9.5 از روش.گردیده است)NH3-NH4Clاستفاده

هاي حقیقی اجرا گردیده و نتایج آن با نتایج حاصله از تکنیکهاي پیشنهادي روي برخی از نمونه

HPLCمقا اسپکتروفتومتري .یسه گردیده استو

میزبان با -فورالدهید بر اساس مکانیسم مهمان-2یک حسگر انتخابی پتانسیومتري براي -

.طراحی گردیده است)بعنوان یونوفور(آرن تترابنزیل اتر (4)استفاده از کالیکس 

معرف)فورفورال(فورالدهید -2در این رابطه مشتق هیدرازون   ـ   Tاردجـربا ابعنـوان یـک زوج یـون ب

pHدر.کنـدتاثیرات متقابل ضعیف و تعادلی با یونوفور مورد نظر برقرار می1کاتیون بالکی فورازونیوم

5-10تی در محدوده غلظتینرنس،الکترود سنتزي یک رفتار 9.2
×-5.010-1

فورالدهیـد بـه   -2از1.0×

15زمـان پاسـخ دهـی    الکترود مذکور از نظر شیمیایی خنثی، داراي پایداري خوب با .گذاردنمایش می

- furazonium1


