

Faculty of Chemistry Department of Analytical Chemistry

Ph.D. Thesis

Title of the Thesis

Development of Analytical Methods in Trace Determination of Furaldehydes and Methyl *tert*-Butyl Ether as Pollutants Emitted from Petroleum Industry

Supervisors:

Prof. Mojtaba Shamsipur

Dr. Mohammad Teymouri

By:

Ali Akbar Miran Beigi

March 2010

TABLE OF CONTENTS

Contents	Page
Table of Contents	А
List of Figures	Н
List of Tables	K
Chapter 1: Introduction and Literature Review	
1.1. The Petroleum Industry and Environmental Pollution	2
1.1.1. History	2
1.1.2. Oil refineries, a significant source of pollution	3
1.1.3. 2-Furaldehyde (Furfural)	5
1.1.4. Methyl <i>tert</i> -butyl ether (MTBE)	7
1.2. Analytical Techniques Used in Measuring Some of Furaldehydes and	
Oxygenates	10
1.2.1. Voltammetric methods	10
1.2.1.1. Cyclic voltammetry	10
1.2.1.2. Differential pulse voltammetry	12
1.2.1.3. Square-wave voltammetry	14
1.2.1.4. Adsorptive stripping voltammetry and potentiometry	16
1.2.1.5. Mercury film technique	18
1.2.1.5.1. Selected application of MFE's	21
1.2.1.6. Ionic liquids as electrolytes for voltammetry	22
1.2.1.6.1. Potential of ionic liquids	23
1.2.1.6.1. Electrochemical windows of room-temperature	
ionic liquids	25
1.2.2. Ion selective electrodes	26
1.2.2.1. Detection limit of ISEs	27
1.2.2.2. Measuring range of ISEs	29
1.2.2.3. Lifetime of ISEs	29

30 1.2.2.4. Static response time of ISEs 1.2.2.5. Dynamic response time of ISEs 31 1.2.2.6. Selectivity of an ISE 32 1.2.3. Using chemometric methods and Uv-spectrophotometry 33 1.2.3.1. Multivariate calibration 34 1.2.3.2. Multiple linear regression (MLR) 35 1.2.3.3. Principal component regression (PCR) 36 1.2.3.4. Partial least square regression (PLS) 37 1.2.3.5. Genetic algorithm optimization (GAO) 38 1.2.3.6. Ant colony optimization (ACO) 38 1.2.4. Headspace-gas chromatography 39 39 1.2.4.1. Principles and types of headspace analysis 1.2.4.2. Basic theory of headspace analysis 40 1.2.4.3. The fundamental principles of headspace sampling systems 42 1.3. Literature Review 43 1.3.1. Furaldehydes (furfural and hydroxymethylfurfural) 43 1.3.2. Methyl *tert*-butylether (MTBE) 46

Chapter 2: Novel Voltammetric Methods for Determination of Furaldehydes in Foods, Pharmaceutical Syrups and Oil Refinery Wastewaters

2.1. Introduction	49
2.2. Experimental	50
2.2.1. Chemicals	50
2.2.2. Apparatus	51
2.2.3. Procedure	51
2.2.3.1. Ordinary square wave voltammetry (using SMDE)	51
2.2.3.2. Square wave voltammetry by using glassy carbon mercury	
film-coated electrode	53
2.2.3.3. Adsorptive square wave stripping voltammetry (using SMDE)	54

Page

2.3. Results and Discussion	54
2.3.1. Principle of detection	54
2.3.2. Optimization of detection conditions	60
2.3.2.1. Effect of pH on voltammetric response of furaldehydes	60
2.3.2.2. Optimization of instrumental and experimental conditions using	
SMDE and MF-GCE	61
2.3.2.3. Optimization of instrumental conditions in Ad-SWSV as a	
detection mode	65
2.3.3. Response characteristics	60
2.4. Determination of Furaldehydes in Real Samples	70
2.5. Future Work	73

Chapter 3: Highly Sensitive and Selective PVC-Membrane Potentiometric Sensors Based on a Calix [4] arene Derivative for 2-Faraldehyde

3.1. Introduction	77
3.2. Experimental	78
3.2.1. Apparatus	78
3.2.2. Reagents	79
3.2.3. Synthesis of the ionophore	79
3.2.4. Electrode preparation	80
3.2.5. Derivatization of 2-furaldehy de and calibration	81
3.3. Results and Discussion	82
3.3.1. Effect of membrane composition	82
3.3.2. Calibration curve and statistical data	84
3.3.3. Effect of pH	89
3.3.4. Static and dynamic response times and reversibility of the electrode	91
3.3.5. Evaluation of selectivity coefficients	93
3.3.6. Life time study	97
3.4. Determination of 2-Furaldehyde in Real Samples	97

3.5. Conclusion	98
3.6. Further Works	100

Page

Chapter 4: Physical and Electrochemical Properties of Ionic Liquids

(1-Ethyl-3-Methylimidazolium Tetrafluoroborate,

$\label{eq:linear} 1-Butyl-3-Methylimidazolium\ Trifluoromethanesulfonate\ and$

1-Butyl-1-Methylpyrrolidinium bis (trifluoromethylsulfonyl)) Imide

4.1. Introduction	102
4.2. Experimental	103
4.2.1. Preparation of ionic liquids	103
4.2.2. Characterization of ILs	105
4.2.2.1. 1-Ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF ₄])	105
4.2.2.2. 1-Butyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide	105
4.2.2.3. 1-Butyl-3-methylimidazolium trifluoromethane sulfonate	105
([BMIM][OTf])	
4.2.3. Apparatus and procedure	106
4.3. Results and Discussion	108
4.3.1. Physicochemical properties of ILs	108
4.3.2. Density and viscosity	111
4.3.3. Surface tension	116
4.3.4. Refractive index and pH	118
4.3.5. Thermal expansion	121
4.3.6. Thermal analysis	122
4.3.7. Electrochemical window	124
4.4. Conclusion	126

Chapter 5: Room-Temperature Ionic Liquids as Electrolytes in Electroanalytical Determination of Trace 2-Furaldehyde in Oil and Related Wastewaters in Refinery Processes

Page

5.1. Introduction	129
5.2. Experimental	130
5.2.1. Chemicals	130
5.2.2. Apparatus	131
5.3. Results and Discussion	132
5.3.1. Investigation of ILs	132
5.3.2. Electrochemical stability of IL_1 - IL_3	133
5.3.3. Preliminary studies on electrochemical behavior of 2-furaldehyde	
in IL ₁ -IL ₃	135
5.3.4. CV studies and optimization of 2-furaldehyde detection	
conditions by DPV	137
5.3.5. Determination of 2-furaldehyde concentration by	
DPV and SWV	139
5.3.6. Effect of water and other impurities on the voltammograms	
of 2-furaldehyde	143
5.3.7. Determination of 2-furaldehyde in real samples	145
5.4. Conclusion	146

Chapter 6: Simultaneous Spectrophotometric Determination of 2-Furaldehyde and 5-Hydroxymethyl-2-Furaldehyde by Using Ant Colony Algorithm-Based Wavelength Selection – Partial Least Square Regression

6.1. Introduction	149
6.2. Experimental	150
6.2.1. Apparatus	150
6.2.2. Reagents and materials	151
6.2.3. Procedures	151
6.2.3.1. Individual calibration	151
6.2.3.2. Multivariate calibration	152
6.2.3.3. Chemometrics methods	152

.3. Results and Discussion	153
6.3.1. Wavelength selection by the genetic algorithm	160
6.3.2. Wavelength selection by the ant colony algorithm	163
6.3.3. Analytical Applications	164

Page

Chapter 7: Simultaneous Determination of Formaldehyde and MTBE in Water Matrices Using Static Headspace-GC/MS

7.1. Introduction	167
7.2. Experimental	169
7.2.1. Chemicals and Standards	169
7.2.2. Apparatus	169
7.3. Results and Discussion	171
7.3.1. Extraction temperature	171
7.3.2. Extraction time	171
7.3.3. Ionic strength influence	173
7.3.4. Sample volume	174
7.3.5. Evaluation of the method performance	175
7.3.6. HS-GC-MS of real samples	178
7.4. Conclusions	179

Chapter 8: Biodegradation Study of Methyl *tert*-Butyl Ether by Human Cytochrome P-450 2A6

8.1. Introduction	181
8.2. Experimental	183
8.2.1. Chemicals	183
8.2.2. Identificaation of pathway intermediates	183
8.2.3. Metabolism of MTBE in CYP 2A6	185
8.2.4. Kinetic analysis	186
8.3. Results and Discussion	186

References	184
8.4. Conclusions	192
8.3.2. Proposed pathway for MTBE degradation by CYP 2A6	189
8.3.1. Kinetic analysis of MTBE biodegradation in closed system	186

List of Figures

Contents

Fig. 1.1. Potential time extraction signal in cyclic voltammetric experiment	10
Fig. 1.2. Typical cyclic voltammogram for a reversible redox process	11
Fig. 1.3. Extraction signal for differential - pulse voltammetry	12
Fig. 1.4. Differential pulse (a) and DC (b) polarogams for a	13
Fig. 1.5. Normal-pulse (curve A) and differential - pulse (curve B)	14
Fig. 1.6. Square-wave waveform showing the amplitude,	15
Fig. 1.7. Accumulation and stripping steps in adsorptive stripping	17
Fig. 1.8. Chemical structure of ionic liquids	24
Fig. 1.9. Linear sweep voltammogram of RTILs as typically observed	26
Fig. 1.10. The schematic diagram of an ion-selective electrode	27
Fig. 1.11. A typical calibration curves for an ion-selective electrode	28
Fig. 1.12. A typical static response time curve	30
Fig. 1.13. Dynamic response time of the potentiometric sensor	31
Fig. 1.14. A typical high to low curve	31
Fig. 1.1.5. Principles of static (equilibrium) headspace-gas chromatography	39
Fig. 1.16. A headspace vial containing a liquid sample	40
Fig.1.17. Principles of an automated HS-GC system with syring injection	42
Fig. 2.1. Typical cyclic voltammograms of (a) 0.10 N citrate buffer	56
Fig. 2.2. Typical square wave voltammograms of (a) and (c) blank	58
Fig. 2.3. Adsorption voltammograms of F and HMF (a)	59
Fig. 2.4. Plot of (a) the peak current vs. $v^{1/2}$	64
Fig. 2.5. Dependence of the peak current (I_P) of the FuGA	66
Fig. 2.6. Calibration graphs of (a) 2-furaldehyde (F) in	68
Fig. 2.7. Effect of Pt (IV) on responses of 120 ngg ⁻¹ F	69
Fig. 2.8. Chromatogram of a commercial orange honey	74
Fig. 2.9. Ordinary square wave voltammograms of (a)	75
Fig. 3.1. Chemical structure of the ionophore	80
Fig. 3.2. Potential response of different synthetic sensor	84

Fig. 3.3. Calibration graphs for 2-furaldehyde sensor based on	85
Fig. 3.4. SEM images of a synthetic polymer membrane	87
Fig. 3.5. a) UV-vis spectrum of $10 \mu gg^{-1}$ (A) Girard's	88
Fig. 3.6. The effect of the pH of test solution	89
Fig. 3.7. Potential response of PME in three different electrolytes	90
Fig. 3.8. a) Static and b) Dynamic response time of the 2-furaldehyde	92
Fig. 3.9. Potential response of various interfering ions based on	95
Fig. 4.1. Chemical structure of the ionic liquids	103
Fig. 4.2. FT-IR and Mass Spectra of [EMIM][BF ₄],	106
Fig. 4.3. Temperature dependence of kinematic viscosity	113
Fig. 4.4. Comparison of density data for [EMIM][BF ₄] (A)	115
Fig. 4.5. Comparison of logarithm of viscosity as function	117
Fig. 4.6. Temperature dependence of surface tension	118
Fig. 4.7. (A) Plots of temperature dependence of experimental values	120
Fig. 4.8. Plot of calculated values of thermal expansion	121
Fig. 4.9. TG curves and DSC traces for [EMIM][BF ₄] (A)	123
Fig. 4.10. Cyclic voltammograms of the fluoroanions of the pure	125
Fig. 4.11. Typical differential pulse (1) and cyclic (2)	126
Fig. 5.1. A schematic of mini-double wall three electrode cell	132
Fig. 5.2. Structural representation of studied ionic liquids	133
Fig. 5.3. Electrochemical window of studied RTILS	134
Fig. 5.4. Typical voltammogram of 2-furaldehyde in [EMIM][BF ₄]	136
Fig. 5.5. Plot of (a) the cathode peak current vs $v^{1/2}$	138
Fig. 5.6. Typical square wave voltammograms of (a) blank (b) 50	140
Fig. 5.7. Calibration graphs of (a) 2-furaldehyde in lipophil and hydrophil	142
Fig. 5.8. SWV voltammograms of 100 μ gg ⁻¹ 2-furaldehyde in [EMIM][BF ₄]	144
Fig. 6.1. UV/VIS Spectra of furaldehydes: a) 10 μ gml ⁻¹ 2-furaldehyde	154
Fig. 6.2. Individual calibration graphs for 2-furaldehyde	156
Fig. 6.3. Cumulative and eigen values of four calculated	158

Fig. 6.4. Plot of predictive quality the model by PLS... 159 Fig. 6.5. Selected wavelengths by the GA-PLS a) F b) HMF 161 Fig. 6.6. Chromatogram of an oil refinery wastewater.... 165 Fig. 7.1. Oxidative cleavage of MTBE 168 Fig. 7.2. Influence of the extraction temperature on the relative peak ... 172 Fig. 7.3. Effect of extraction time on peak areas 173 Fig. 7.4. Effect of NaCl additives on detector response 174 Fig. 7.5. Effect of solution volume in 20 ml vial 175 Fig. 7.6. Total ion chromatogram (TIC) in SIM mode 176 Fig. 7.7. Standard calibration curves of peak areas 177 Fig. 8.1. Degradation of MTBE by CYP-450 187 Fig. 8.2. Initial rates of the enzyme catalyzed reaction 188 Fig. 8.3. Plot of $1/V_0$ versus $1/S_0$ according to lineweaver –Burk equation 188 Fig. 8.4. Headspace GC spectra of MTBE degradation by CYP 2A6, 190 Fig. 8.5. HPLC analysis of MTBE degradation by CYP 2A6 191 Fig. 8.6. Proposed pathways for the degradation of MTBE by CYP-450 192

J

List of Tables

Contents	Page
Table 1.1. Top ten world oil comparnies by reserves and production	3
Table 1.2. Some physical properties of 2-furaldehyde	5
Table 1.3. Physical and chemical properties of MTBE	8
Table 1.4. Common adsorptive stripping schemes for measurement of trace metals	17
Table 1.5. Selected applications of mercury-covered microelectrodes	20
Table 1.6. Selected applications of modified MFES with	21
Table 1.7. Basic characteristics of organic ionic liquids	23
Table 1.8. Physical and electrochemical properties of ionic liquids	25
Table 1.9. Analytical methods available in literature	44
Table 1.10. Analytical methods available in literature	45
Table 1.11. Analytical methods available in literature	47
Table 2.1. Sample weight recommended for the determination of F and HMF	
by using SWV techniques and UV spectroscopy	52
Table 2.2. The optimized experimental and instrumental conditions for the	
determination of furaldehydes	62
Table 2.3. Determination of total furaldehyde in several waste samples, food	
products and some pharmaceutical syrups.	72
Table 3.1. Comparison of PVC membranes of tetra-benzylether calix [4] arene	
and performance characteristics of 2-furaldehyde selective electrode	83
Table 3.2. Study of reproducibility in steady readings during 5 cycles	93
Table 3.3. Selectivity coefficients of various interfering ions	96
Table 3.4. Lifetime study of 2-furaldehyde selective electrode	97
Table 3.5. Trace determination of 2-furaldehyde in some oil refining wastewaters	99
Table 4.1. Density, dynamic viscosity, refractive index,	109
Table 4.2. Fitting parameters of equations (1) and (2)	110
Table 4.3. Estimated density, dynamic viscosity,	111
Table 4.4. Experimental and literature values of densities	112
Table 4.5. Impurity contents of the studies ILs as mass fraction w	116
Table 4.6. Thermal expansion coefficients, of ILS calculated	121

Table 5.1. Experimental and literature values of some physical	134
Table 5.2. Optimal parameters selected in DPV detection mode for trace	
determination of 2-furaldehyde	140
Table 5.3. Dynamic range and sensitivity of differential pulse voltammetry	143
Table 5.4. Comparison of LOD and LOQ for [EMIM][BF4]	143
Table 5.5. Determination of 2-furaldehyde in several real and synthetic samples	146
Table 6.1. Set of calibration (C1-C13) and validation samples (V1-V5) of F and H	MF 155
Table 6.2. F and HMF calibrations by OLS regression	156
Table 6.3. Composition of prediction samples and predicted values from	
CLS, PCR, PLS, GA-PLS and ACO-PLS models	157
Table 6.4. Predictions for the models constructed with	160
Table 6.5. Predictions for the models constructed with the original	162
Table 6.6. Predictions for the models constructed with the original	163
Table 6.7. Simultaneous determination of F and HMF in several real	
and synthetic samples.	164
Table 7.1. Headspace conditions for simultaneous determination of	
formaldehyde and MTBE	170
Table 7.2. Analytical conditions of MTBE, formaldehyde and methylethyl ketone	
by GC/MS with SIM	171
Table 7.3. Analytical figures of merit of the determination of MTTBE	
and HCHO compounds	177
Table 7.4. Evaluation of the goodness of fit and linearity of calibration graphs	178
Table 7.5. Determination of HCHO and MTBE in water samples at	
optimum extraction conditions	178
Table 7.6. Simultaneous determination of MTBE and formaldehyde	
in synthetic biological samples	179
Table 8.1. Headspace conditions used in all measurements	184
Table 8.2. Analytical conditions of MTBE and methylethyl ketone by GC/MS	
with SIM	185
Table 8.3. Biodegragation kinetic parameters for some enzymes and liver microson	nes 189

ACKNOWLEDGEMENTS

Before everything, I am ever grateful to God, the Creator and the Guardian, and to whom I owe my existence. piece of the work will never be accomplished without our God Almighty. I thank God for enabling me to achieve all that I have achieved.

I would like to express my deep and sincere gratitude to my first supervisor, Professor Mojtaba Shamsipur, Head of Iranian Chemical Society, Editor-In-Chief of Journal of Iranian Chemical Society (JICS) and Academic Staff of Analytical Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah. His perpetual energy and enthusiasm in research had motivated all his advisees, including me. In addition, he was always accessible and willing to help his students with their research. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I am deeply grateful to my second supervisor, Dr. Mohammad Teymouri, Head of Oil Refining Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, for his detailed and constructive comments, and for his important support throughout this work. He was also my supervisor during passing my MSc thesis and his valued experiences broadened my perspective on the practical aspects in petroleum industry. He gave me the opportunity to work in Physical and Chemical Analyses Research Group, Oil Refining Research Division, and gave me untiring help during my difficult moments.

My sincere thanks are due to the official referees, Professor D. Nematollahi, Professor, A. Afkhami, Professor M.B. Gholivand, Dr. F. Jalali and Dr. M. Irandoust for their detailed review, constructive criticism and excellent advice during the preparation of this thesis. In particular, I would like to thank Dr. M. Irandoust, who introduced me analytical aspects of Ionic Liquids, and Professor M.B. Gholivand for his lectures in field of advanced electrochemistry.

I owe my loving thanks to my wife, Zohreh Nouri, whom she has been, always, my pillar, my joy and my guiding light, and I thank her. Also my dauthor, Sajedeh Miran Beigi and my son Mohammad Sajjad Miran Beigi. They have lost a lot due to my long research. Without their encouragement and understanding it would have been impossible for me to finish this work.

My deepest gratitude goes to my parent, mother and father. They worked hard to support the family and spare no effort to provide the best possible environment for me to grow up and attend school. My special gratitude is due to my wife's parents and my brothers, a constant source of support during this thesis, and the work would certainly not have existed without them.

This thesis is the result of five years of work during which I have been accompanied and supported by many people. It is now my great pleasure to take this opportunity to thank them. I believe that I would not be able to name everyone separately and to thank for everything that they did for me. However I would like to take the opportunity and express a few words of thanks to my best colleagues and friends.

I wish to extend my warmest thanks to all those who have helped me with my work especially, Dr. Ramezani, Miss Sadeghi, Mr. Najafi, Miss Sahari, Mr. Zahedi, Mr. Pourmortazavi, Mr. Roshani, Mr. Ghanbari, Mr. Rahimi and Mr. Rajabi from Razi University; Mr. Samimi, Mr. Soleimani, Mr. Tash, Mr. Talachi, Mr. Vahid, Mr. Akbari, Mr. Bahari, Dr. poursaberi, Dr. Rezapour, Mrs Rasoolipour, Mrs Ghahremani, Miss Akbar, Miss Chitsazian, Mr. Rasekh, Mr. Honari, Mr. Mehdizadeh, Dr. Eskandari, Mr. Bahari, Mr. Zeinali, Mr. Ghorbani, Mr. Navabi, Miss Goodarzi and Mrs Ghadimzadeh from Research Institute of Petroleum Industry; Dr. Mizani, Dr. Kazemi, Mr. Davarkhah and Dr. Zargoosh from Tarbiat Modares University; Dr. Hemmatinejad and Dr. Zare from Shiraz University; Dr. Zuhair Asfari from Strasbourg University, Mr. Norouzi and Mr Hashemi from Kermanshah Oil Research Center.

The support of this work by the Iran National Science Foundation (INSF), Research Institute of Petroleum Industry and Razi University is also gratefully acknowledged.

Tehran, Iran, March 2010

Ali Akbar Miran Beigi

Abstract

Sensitive and precise voltammetric methods for the determination of trace amounts of furaldehydes, mainly as furfural (F) and 5-hydroxymethyl-2-furaldehyde (HMF), in waste waters and other matrices is described. Determination of total furaldehyde at $< \mu g g^{-1}$ levels in alkaline buffered aqueous media was individually investigated. By the use of ordinary SWV and adsorptive square wave stripping voltammetry (Ad-SWSV), the detection limits for determination of F and HMF found to be 400 and 10 ng g⁻¹, respectively. At a 1.0 µg g⁻¹ level of furfural in sample, the relative standard deviation (n = 4) was 2.79%. The use of Ad-SWSV of F and HMF, after their in situ derivatization with trimethylaminoacetohydrazide chloride (Girard's reagent T) at a static mercury drop electrode (SMDE) in NH₃-NH₄Cl buffer of pH 9.5, resulted in a limit of detection of 10 ng g⁻¹ for the resolved peaks of HMF and F. The results obtained by the proposed method for the real samples were compared with the corresponding results from UV-spectrophotometry and HPLC experiments in various matrices.

A 2-furaldehyde-selective PVC-membrane electrode was designed based on the hostguest interaction between tetrabenzyl ether Calix[4]arene, as an ionophore, and a lipophilic hydrazone derivative generated in situ from reaction of 2-furaldehyde and Girard's reagent T. At a pH of 9.2, the electrode exhibited a Nernstian response over the 2-furaldehyde concentration range of (5.0×10^{-5}) - (1.0×10^{-1}) M. The electrode found to be chemically inert and of adequate stability with a response time of 15 s with a good reproducibility (\pm 0.2 mV), and could be used for a long working lifetime. In order to improve the minimum detectable concentration of 2-furaldehyde, further studies have been performed using a coated graphite electrode and coated platinum and gold disks. Some analytical aspects of adsorptive square wave voltammetry have also been presented in order to elucidate the adduct formation between 2-furaldehyde and Girard's reagent T. The interfering effects of some Na⁺, K⁺, NH₄⁺, formaldehyde, 5-hydroxymethyl 2-furaldehyde (HMF), excess of Girard's reagent T and organic solvents such as isopropyl alcohol and N,Ndimethylformamide on the sensor's response have been studied. The viability of using the electrode for the trace determination of 2-furaldehyde in several Iranian oil refinery wastewater samples was also demonstrated. The results obtained from the developed method for real samples were compared with those from UV-spectrophotometric and highperformance liquid chromatographic experiments.

Three of ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate types ([EMIM][BF₄]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][OTf]), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyrr][NTf₂]) were prepared and a variety of their fundamental properties such as kinematic (v) and dynamic (η) viscosities, thermal stability, surface tension (σ), refractive index (n_D), pH and density (ρ) were investigated as a function of temperature. The coefficients of thermal expansion (α_p) of the ionic liquids were also calculated from the experimental values of the density in different temperatures. Electrochemical stability of the ionic liquids (as electrolytes for voltammetric aspects) was also studied at glassy carbon electrode (GCE). The measurements were performed in a double wall three electrode cell, applying Pt wire as a quasi-reference electrode. The results showed an ideal wide range of potential windows for studies of electrochemical behavior of some species such as furaldehydes in the lipophilic and hydrophilic ionic liquids.

In one another work, the three selected ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF₄], 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMIM][OTf], and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide [bmpyrr][NTf₂] were studied as electrolytes in electroanalytical quantification of 2furaldehyde using square wave and differential pulse voltammetries. On applying a cathodic scan, a well-defined 2-electron wave was observed corresponding to the reduction of 2-furaldehyde to furfuryl alcohol. The electrochemical stability of the ionic liquids as electrolytes for analytical aspects and electrokinetic studies were investigated using a glassy carbon electrode (GCE). The measurements were carried out in a designed double wall three-electrode cell, using two platinum wires as the quasi-reference and counter electrodes. Differential pulse voltammetry was found to be the most sensitive method at GCE. The detection limits of 1.4, 19.0 and 2.5 μ g g⁻¹ were obtained for the determination of 2-furaldehyde in [EMIM][BF₄], [BMIM][OTf] and [BMPyrr][NTf₂], respectively. At a concentration of 50 μ g g⁻¹, the maximum relative standard deviation (n = 3) was 4.9%. The effect of water on the potential window and waveforms was also investigated in the ionic liquids studied. The proposed method was ideally suited for trace determination of 2furaldehyde, especially in oil matrices.

Chemometric methods were also used in simultaneous determination of some petroleum pollutants with nearly similar chemical structures. Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. The solution process is stochastic and is biased by a pheromone model, which is used to probabilistically sample the search space. ACO is a relatively novel technique for solving hard combinatorial optimization problems. The inspiring source of ACO is the foraging behavior of real ants. Since wavelength selection is a strategy used for improving the quality of calibration methods, we investigated simultaneous spectrophotometric determination of two furaldehydes, namely, 2-furaldehyde (F) and 5-hydroxymethyl-2-furaldehyde (HMF), using ant colony optimization-partial least squares (ACO-PLS) regression. Predictive abilities of ACO in wavelength selection process was examined for spectrophotometric analysis of these species, and was compared with other regression methods, such as CLS, PCR, PLS, and GA-PLS. The ACO-PLS showed superiority over other methods regarding to the prediction ability of the resulted model and providing useful information about the chemical system. The proposed method was also successful when applied to the determination of furaldehydes in oil refinery waste waters.

A sensitive and reliable method based on static headspace-extraction (HS) followed by GC/MS was developed for the qualitative and quantitative analysis of methyl tertbutylether (MTBE) and formaldehyde in water matrices. To enhance the extraction capability of the HS, the extraction parameters such as extraction temperature, extraction time, the ratio of headspace volume to sample volume and sodium chloride concentration were optimized. Good linearity was verified in a range of 5-10000 μ g/L for MTBE (r=0.9998), while that for HCHO was 5-500 μ g/L (r=0.9996). Detection limits for MTBE and HCHO were 0.2 μ g/L and 0.3 μ g/L, respectively. Best results were obtained when the analyzed water samples were heated to 70 °C for 20 min, with a sample volume 10 mL, in a 20 mL vial, while 30% (w/v) NaCl was used to saturate the samples. The proposed analytical method was successfully used for the quantification of selected analytes in environmental water samples.

MTBE is widely used as an gasoline oxygenate and octane number enhancer for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health are a major public concern. However, information on the metabolism of MTBE in human tissues is lacking. The present study demonstrates that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and formaldehyde, major circulating metabolites and markers for exposure to MTBE. CYP2A6 is known to be constitutively expressed in human livers and metabolism of gasoline ethers is catalyzed by this enzyme. The present study used CYP2A6 to assess the contribution of 2A6 to the metabolism of MTBE. In comparison with literature, our results clearly demonstrate that 2A6 plays a significant role in the metabolism of MTBE.

When a degradation process is performed, the use of analytical techniques to identify and quantify the degradation products is an aspect of interest. Subsequently, analytical techniques which give structural information of intermediates have special interest when a pathway is required. Although instrumental techniques used in previous works like HS GC-FID and P&T GC-MS, were not sufficient for proposing a mechanism, this work is a proof to previous probable pathways by using HPLC (for monitoring aldehydes and ketons) and HS-GC-MS (for TBA, alcohols and other intermediates). _ یک حسگر انتخابی پتانسیومتری برای 2_فورالدهید بر اساس مکانیسم مهمان_ میزبان با استفاده از کالیکس (4) آرن تترابنزیل اتر (بعنوان یونوفور) طراحی گردیده است.

در این رابطه مشتق هیدرازون 2_فورالدهید (فورفورال) با معرف جرارد T بعنوان یک زوج یون با کاتیون بالکی فورازونیوم تاثیرات متقابل ضعیف و تعادلی با یونوفور مورد نظر برقرار می کند. در pH 9.2 ،الکترود سنتزی یک رفتار نرنستی در محدوده غلظتی⁵⁻¹0×10⁻¹ از 2_فورالدهید به نمایش می گذارد. الکترود مذکور از نظر شیمیایی خنثی، دارای پایداری خوب با زمان پاسخ دهی 15

1- furazonium