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Abstract

Statistical modeling is an important part in statistics. Cox test is a solution of this

problem which is modified likelihood ratio test for two non-nested models. It is an

absolute hypothesis testing. Another method is Vuong test which considers equivalence

of two competing models close to the data generating model. It is a relative hypothesis

testing. Cox and Vuong tests are two model selection tests. On the other hand, AIC

is a model selection criterion which is free of type-I error. These three methods are

based on Kullback-Leibler divergence.

When the model is selected as the better model than the other ones with Vuong test

or as the best model with AIC, it is not specified that how it is close to the data

generating model. It is proposed to use the result of an absolute hypothesis testing,

like Cox test, with Vuong test and AIC to answer to this question.

In this work, these three approaches which are essentially based on the likelihood

function are studied. The asymptotic properties of them are verified. Finally, they are

compared with each other.
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Chapter 1

Some Definition



1.1 Introduction

An important problem in statistic concerning a sample of n independent and identically

distributed observations is to test whether these observations come from a specified

distribution. In such a uncertainty situation the statistical process based on data will

construct statistical models for decision making. The analysis of models has followed

two approaches in the literature; the hypothesis testing and the model selection crite-

ria. Sometime a model is chosen which is at least not falsified. Clearly this approach is

different of classical hypothesis testing. Two models may be nested or non-nested, and

in the latter case they may be overlap. The nested models are frequently studied in

both theoretical and applied statistics. But the non-nested models are less discussed.

Historically a serious studies on non-nested models can be found in a period from Cox

(1961,1962) to Vuong (1989). In search of similarities and differences between Cox test

and Vuong test one may say that the Vuong test is a development of the Cox test.

Both tests are a generalization of the likelihood ratio test under different sense. In

Cox test the difference between the log-likelihood ratio and its expected value under

the null hypothesis is considered. The Cox test says that a true model must be able to

predict the performance of the specific alternatives, i.e. a true null should not distort

the actual performance of the alternative model. The idea is to compare the true

performance of the alternative model with the expected performance of the alternative

model under the null hypothesis. The important points is that when a hypothesis is

rejected, there is no means that it is rejected in favor of the specific alternative. For

example the rejection of both models implies that neither model could predict the

results of the other model. Then one concludes that both models are mis-specified.

May be a solution to this difficulty is to use a model selection approach which chooses

the model which is closest to the true model. Also, the other difficulty with Cox test

is calculating the expected value of the log-likelihood ratio under the null hypothesis.

Another candidate in a similar situation is Vuong test. In Vuong viewpoint, the best

model is the model which maximizes the relevant part of Kullback-Leibler (Kullback
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and Leibler, 1951), divergence. The null hypothesis of Vuong test is the expectation

under the true model of the log-likelihood ratio of the two candidate models which are

equal to zero. It means that two candidate models are equivalent. This expectation

however is unknown, but Vuong test works, because the decision making procedure by

Vuong test does not depend on this unknown quantity.

On the other hand, some recent methods in model selection criteria are Akaike infor-

mation Criterion (AIC), (Akaike, 1973), as a kind of penalized likelihood which its

small value (notice that its small value has no intrinsic meaning) indicates the better

model. The Bayesian information criterion (BIC), (Schwarz, 1978), Cross Validation

technique, which is asymptotically equivalent to the AIC in the parametric case, boot-

strap information criterion (EIC), (Ishiguro et al., 1997), ICOMP (Bozdogan, 2000),

which is asymptotically equivalent to the BIC, are another model selection criteria.

Notice that the conclusion of the criteria like AIC are never about the truth or falsity

of a hypothesis, but about its closeness to the data generating model.

On the other hand, it seems that the rational behind the classical hypothesis testing

is minimization of the type-I error and the type-II error which are incompatible. But

the actual practice is a trade off between these two errors. There is another objection

to the rationale of classical hypothesis testing. It may be difficult to find a correct

specified model. It may still be relevant to choose the best model among a set of (mis-

specified) models. The idea of model selection is begin with a set of competing models

to choice the best one. The decision making on this set is a important question in sta-

tistical inference. The Cox test, Vuong test and the AIC are designed to answer to this

question that which of the competing models is the best one, or at least, which of them

are equivalent to select as the bests. The literature on non-nested hypothesis testing in

statistics was pioneered by Cox (1961, 1962) and Atkinson (1970), this subject applied

by Pesaran (1974) and Pesaran and Deaton (1978). The analysis of non-nested re-

gression models considered by Davidson and MacKinnon (1981), Fisher and McAleer

(1981) and Dastoor (1983). Vuong (1989) considered the hypothesis testing when

two competing models are nested, overlap and non-nested. His approach is based on

the asymptotic distribution of difference of log-likelihood functions for two compet-

ing models. Recently the asymptotic distribution of AIC in linear regression models

and the bias correction of this statistics are discussed by Yanagihara and Ohomoto

(2005). Recently Commenges et al. (2008) has considered the normalized difference of
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AIC as an estimate of a difference of Kullback-Leibler risks between two models. The

comparison between the three essential approaches, Cox, Vuong and AIC, is of our

interest. Genius and Strazzera (2002) have considered the behavior of three methods

for regression models with discrete response. In this direction a question arises, What

is the interpretation of equivalence of two rival models in Vuong approach? In fact

we want to pay to this question, when two rival models are equivalent in Vuong test,

they are two equivalent models which are close to unknown true model or far from it?.

What is the result of Cox test and AIC in this case? In this work we want to answer

to some kind of these questions by simulation.

The structure of this work is as follow. Chapter 1 gives some definitions which are

required. Chapter 2 contains likelihood function. Nested and non-nested hypothesis

testing are presented in chapter 3. Chapter 4 describes model selection based on Akaike

information criterion. Finally, comparison between criteria is presented in chapter 5.

1.2 Statistical Model

Statistical models are needed when the random phenomena under study is not com-

pletely predictable. More precisely, in almost all empirical studies, there are uncon-

trollable elements of variability. For example if one observes the average hourly wind

velocity at a given meteorological station, the variable under consideration is a random

variable. It can not be generally predictable with certainty what value will be assumed

in the next hour of observation. A complete characterization of the random variable

being observed is given only if it can specified exactly with a statistical model.

The Oxford dictionary defines a model as a simplified or idealized description of a

particular system, situation or process, often in mathematical terms that is put forth

as a basis for a theoretical or empirical understanding, or for calculations, predictions,

etc. Thus, a good definition of the statistical model is, a simplified or idealized de-

scription of a random phenomenon, generally in probabilistic terms, that is put forth

as a basis for a theoretical or empirical understanding, or for conclusions, inferences,

predictions, etc. All of the statistical models (the probability distribution functions)

depend on one or several parameters. The parameters vary over a specified range,

called the parameter space.

A fundamental difficulty in statistical analysis is the choice of an appropriate model,
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estimating and determining the order of dimension of a model. This is a common

problem when the statistical model contains many parameters. The main purpose of

model selection is to understand structure of the observed data. Thus, one needs to

select a model. In the following section, definitions which needs to model selection are

considered.

1.3 Definitions

The objective of model simplicity is noted by parsimony. Occam’s Razor is a principle

credited to the medieval English philosopher and Franciscan monk William of Ockham

(1285− 1349). “Plurality should not posited without necessity”, is a quote of William

of Ockham. Translated to statistical modeling, Occam’s Razor is sometimes referred to

as the law of parsimony which notes no more causes should be assumed than those will

account for the effect. In other words, everything should be made as simple as possible,

but not simpler (Albert Einstein). Choose the simplest model which adequately fits

to the data is a goal of model selection.

The true or generating model is the model that presumably gave rise to the data, and

it will be showed by probability density function, p.d.f. (or probability mass function,

p.m.f.) h(.).

The candidate (postulate, approximating, competing or proposed) model is the model

that could potentially be used to describe the data. It is chosen such that is close, in

some sense, to the true model. It is noted by f(., θ) or g(., γ) where θ and γ are vector

of the parameters.

A collection of candidate models is a candidate family. In a model selection framework,

this family is formulated to represent all interest candidate models . It is shown with

Fθ = {f(., θ); θ ∈ Θ ⊂ <p} and Gγ = {g(., γ); γ ∈ Γ ⊂ <q}.
A candidate model which has the same structure as the true model is called correctly

(or well) specified model. If it is not correctly specified, is called mis-specified model.

A candidate model which has been fitted to the data is called a fitted model, say

f(., θ̂n).

A fitted model that has a more complex structure than the true model is called an

overspecified model. It includes more parameters, explanatory variables, etc.

A fitted model which has a more simplistic structure than the true model is known as
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underfitted model.

The two models, f(.; θ) and g(.; γ), are nested if one model can be obtained from

the other one by imposing restriction(s). If two models can not be obtained from each

others, are non-nested models. In other words, f(.; θ) and g(.; γ) are non-nested models

if f(x; θ) ∩ g(x; γ) = ∅ and f(.; θ) is nested in g(.; γ) if f(x; θ) ⊂ g(x; γ), (Commenges

et al, 2008).

Mis-specified, nested and non-nested models are considered in more details, latter.

To determine that which of the fitted models in the candidate collection models, best

resembles the true model, one requires a measure which provides a suitable reflection

of the disparity between the true model and a fitted candidate model. The Kullback-

Leibler (Kullback and Leibler, 1951) divergence fulfills this objective. This measure is

introduced in the section (2.6.2).

1.4 Model Selection

The evaluation of competing statistical models is central to the process of scientific

inquiry. When the competing models are stated in the form of predictors from quanti-

tative models, their adequacy with respect to observed data can be rigorously assessed.

Given K plausible candidate models of the underlying process that has generated the

observed data, we should like to know which model approximates the true process

better than the other ones. More generally, we should like to know how much statisti-

cal evidence the data provide for each of K models, preferably in terms of likelihood

(Royall, 1997) or the probability of each of models being correct (or the most correct,

because the generating model may never to be known for certain). The process of

evaluating candidate models is called model selection.

A straightforward solution to the problem of evaluating several candidate models is

to select the model that gives the most accurate description of the data. However,

the process of model selection is complicated by the fact that a model with many free

parameters is more flexible than a model with only a few parameters. It is clearly

not desirable to always deem the most complex model, is the best, and it is generally

accepted that the best model is the one that provides an adequate account of the data

while using a minimum number of parameters. Thus, any criterion for model selection

needs to address this trade off between descriptive accuracy and minimizing the num-

6



ber of parameters.

On other hand, the likelihood theory is an important concept of inference from data,

given a model. It assumes that the model is correctly specified and only the parameters

in the structural model are to be estimated. In the next chapter, likelihood theory is

considered.
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Chapter 2

Likelihood Function and Related

Topics



2.1 Introduction

A method of maximum likelihood is one of the most important tools for estimation

and inference. A fundamental assumption underlying classical results on the properties

of the maximum likelihood estimator (MLE) is that stochastic law which determines

the behavior of the phenomena investigated (the true structure) is know to lie within

a specified model. In other words, the probability model is assumed to be correctly

specified. In many (if not most) circumstances, one may not have complete confidence

that is so. In this case, properties of MLE should be considered, again.

In this chapter, first the likelihood function in classical situation is presented in section

(2.2). Section (2.3) contains asymptotic theory for MLE. Section (2.4) describes lemma

and theorems which are used in this work. Finally, section (2.5) gives mis-specification

which includes quasi-maximum likelihood estimator, its properties, information matrix

test and Kullback-Leibler information criterion.

2.2 The Likelihood Function in Classical Situation

The basic concepts of likelihood estimation are defined in this section.

Definition 2.2.1 (Likelihood Function) Suppose X1, . . . , Xn are random variables

with joint p.d.f. (or p.m.f.) f(x; θ) where θ ∈ Θ. Given observations, the likelihood

function is defined as Lf (θ) = f(x1, . . . , xn; θ) which is a function of θ.

For each independently identical distributed (i.i.d.) random variables X1, . . . , Xn, the

likelihood function Lf (θ) is real-valued function defined on the parameter space Θ.

Definition 2.2.2 (Maximum Likelihood Estimation) Suppose for a random sam-

ple X1, . . . , Xn, Lf (θ) is maximized over Θ at θ̂n such that:

sup
θ∈Θ

Lf (θ) = Lf (θ̂n),

where θ̂n ∈ Θ. Then the statistic θ̂n is called the maximum likelihood estimator (MLE)

of θ.
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The subscript n of θ̂n denotes the dependence of estimation on the number of observa-

tions, which assumed n can increase infinitely. This allows to consider the asymptotic

behavior of the estimators which are obtained of n random sample of population.

The MLE has favorite properties. As the important one is the invariance under trans-

formation which means that if ϕ = g(θ) where g is an arbitrary function and θ̂n is the

MLE of θ, then g(θ̂n) is the MLE of ϕ.

There are essentially two methods for finding MLE:

(i) Direct maximization: Examine Lf (θ) directly to determine which value of θ

maximizes Lf (θ) for a given observed values of the X1, . . . , Xn. This method

is particularly useful when the range (or support) of the data depends on the

parameters.

(ii) Likelihood equations: If the range of data does not depend on the parame-

ter, the parameter space Θ is an open set, and the likelihood function is dif-

ferentiable with respect to θ over Θ, then the MLE of θ satisfies the equations

∇θ logLf (θ̂n) = 0.

Note that log(.) shows the natural logarithm. The equations in (ii) are called the

likelihood equations and logLf (θ) is called the log-likelihood function. ∇θ is the gra-

dient operator with respect to θ. The log-likelihood function is used for convenience.

Because if θ̂n maximize Lf (θ), it also maximizes logLf (θ). In addition in the indepen-

dent case, Lf (θ) expressed as a product, so logLf (θ) becomes sum, which is easier to

differentiate. The likelihood equations can have multiple solutions, so it is important

to check that a given solutions indeed maximizes the likelihood function.

2.3 Asymptotic Theory for MLE

Under some conditions as regularity conditions MLE is a consistent and asymptotically

normal estimator of parameter. These conditions mainly relate to differentiability of

the density and the ability of interchanging differentiation and integration. They are

as follow:

Assumption (A1): Let X1, . . . , Xn be i.i.d. random variables with p.d.f. (or p.m.f.)

f(x; θ) where θ ∈ Θ.
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Assumption (A2): The parameters are identifiable. It means if θ1 6= θ2 then

f(x; θ1) 6= f(x; θ2).

Assumption (A3): The range of random variable X, say R, does not depend on θ

and f(x; θ) is differentiable in θ.

Assumption (A4): The parameter space Θ contains an open set which the true

parameter value, θ0, is an its interior point.

Assumption (A5): For every x ∈ R, the density f(x; θ) is three times differentiable

with respect to θ, the third derivative is continuous in θ, and
∫

R
f(x; θ)dx can

be differentiated three times under the integral sign.

Assumption (A6): For θ0 ∈ Θ, there exists a positive number c and a function

M(x) (both of them may depend on θ0) such that

|∇(3)
θ log f(x; θ)| ≤M(x) ∀x ∈ R, |θ0 − θ| < c with, Eθ0

{M(X)} <∞,

where ∇(i)
θ for i = 1, . . . , n is gradient operator with respect to f(.; θ).

LeCam (1953) showed that under regularity conditions for all n there exists a MLE,

θ̂n. In the next Theorem, it is shown that MLE is a consistent estimator. For more

details see Stuart et al. (1999).

Theorem 2.3.1 Let X1, . . . , Xn be i.i.d. random variables distributed f(x; θ) and

Lf (θ) =
∏n

t=1 f(xt; θ) be the likelihood function, and θ̂n denote the MLE of θ. Under

regularity conditions on f(x; θ) and Lf (θ),

lim
n−→∞

P (|θ̂n − θ0| ≥ ε) = 0 ∀ε > 0 and ∀θ ∈ Θ.

In other words, θ̂n
P−→ θ0.

Since θ0 is the limiting of θ̂n, (θ̂n − θ0) = OP (1) which means (θ̂n − θ0) is bounded in

probability, its asymptotic distribution function can be obtained.

Theorem 2.3.2 Let X1, . . . , Xn be i.i.d. random variables distributed f(x; θ). Under

regularity conditions on f(x; θ) and likelihood function;

√
n(θ̂n − θ0)

L−→ Np(0, I
−1(θ0)),

where I(θ) is the Fisher information.
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