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ABSTRACT

The literature on the theo'ry of Markov chain models for a sequence of
contingency tables began by Bush and Mosteller (1955) and Anderson (1957).
The Bayesian model selection for Markov chain contingency tables and estima-
tion of transition probabililies matrix were presented by Mashkani and Billard
(1992). One of the main results presented in this dissertation is the Bayesian
model selection method, using empirical Bayes approach for finite stationary
Markov chains when in each state one has a log-linear model.

This dissertation consists of six chapters. The first chapter provides intrdduc—
tory material on Empifical Bayes Method (EBM) and it includes four case

studies from political, acturial, medical and behavioral sciences as real ex-

1




amples where our results can be applied. While these exmples have been
analyzed either by Bayesian or classical approaches, they could have been an-
alyzed by empirical Bayes method, which enjoys both Bayesian strenght and
frequentist as well, obhectivity. The second chapter gives a general overview
and discussion of model selection techniques including stepwise and Bayesian
techniques. The empirical Bayes analysis of log-linear and logistic models in
stationary contingency tables are presented in Chapters 3 and 4. In Chapter 5,
we present the model selection problem using the empirical Bayes method in
dyﬁamic contingency tables. In Chapter 6, three real-world examples illustrate
the implementation of the empirical Bayes method developed in Chapters 4 ,
and 5. Finally, we conclude by comparing a number of models via techniques

presented in chapter 2 and 3.



Chapter 1

Historical Background




1.1 Introduction

One of the most important issues in statistical science is the construction of
probabilistic models which represent, or sufficiently approximate, the true gen-
erating mechanism of a random phenomenon. The non-judicious choice of such
models may possibly lead to misleading results concerning the description of
the phenomenon under study. Model building, on the other hand, is the pro-
cedure that decides which probabilistic structure we should finally select as
an appropriate model from a specified set of models. The identification of a
statistical procedure for the selection of good models is still problematic even
in the simple case of covariate selection, that is, selection of variables which
influence a response variable Y under study. Particularly, in variable selection

procedures the most broadly employed methods are the stepwise procedures

- which consist of a sequential application of single significance test. The sim-

plest arguement against the stepwise methods is ’qhat the exact distribution of
the estimand parameters may not be known. Moreover, significance tests in
some cases such as contingency tables cannot discriminate between non-nested
models aﬁd therefore between models‘ with' different distributional structures.
A variety of alternative criterias have been presented in the statistical liter-
atﬁfe. These criterias select the model which maximizes a quantity usually
expressed as the log-likelihdod minus a penalty function which depends on the
dimension of the model. One of the most important methods is the likelihood

ratio test. This alternative procedure, like a stepwise type method, mayAnot



trace the models which maximizes the criteyion used since, in collinear cases
between covariates, some good models will not be visited at all.
The goal of statistical inference, in general, is to extract and to report all avail-
able information about an unknown state of nature ( parameter of interest) 6.
Bayesian inference about 6§ is performed by combining the prior information(
_or uncertainty) about § and the information provided by the experimental data,
via Baye’s theorem. The statistician’s prior uncertainty(before experimenta-
tion) about the para‘metef 0 may be described by a probability density function
of the parameter 0, namely 7(0]n) which depends on some superparameter 7.
" In order to learn more about 8, the statistician observes the outcome of an ex-
periment, Y (a vector of observations. or a single observation), which is related
to 0. This relationship is represented by a family of probability distributions
of Y, conditional on & i.e. f(y|0). When regarded as a function of 6, f(y|9)
is called the likelihood of the data y given the parameter 6. The likelihood is
a function that describes the experiment and the relationship between Y and
0. The posterior distribution of f given the data y, i.c. 7(d]y,7), is .obtained
from 7(0|n) and f(y|6) according to Baye s theorem:

_ f(l®r(Bln) _ Likelihood x Prior distribution
O = )R OB = Marginal ditribution of y =D

- The main idea in Bayesian inference is that the posterior ditribution contains
all the available information about §. Consequently, any inference about
should be deriven from this distribution and some Bayesians state that infer-

ence about 6 is complete whenever the entire posterior w(6|y) is reported.




The statistical models are a collection of joint probability distributions for the
data Y, given §. The frequentist and Bayesian models are extreme cases in
this paradigm.

In the words of Neyman (1977):

- “Frequentist models are extreme in the general framework because their

prior families consist of all one—point distributions, that is, the parameter
0 is a fized but unknown constant”.

and according to Hill(1990) in Bayesian approach:

“Bayesian models [as defined in (1-1)] form the other extreme because they

each have only one element”.
Morris(1986) Commented that:
“The practical statisticians encounter a variety of problems, and the frequency,
objeciz've Bayés and subjective Bayes methods provide a range o f possible
responses. There can be no clear victory for any approach for all applications,
rather, we should train the statisticians for a frequency-Bayes compromise

so that they can more flexibly respond to the new situations.”

* Thus perhaps the best choice is the Empirical Bayes Methods. The adjective

ehpirical in the empirical Bayes method arises from the fact that we are using
the data to help determine the prior through the estinﬁation of the superpa-
Tameter 7.

The empirical Bayes method does not belong to either of these extremes, but

it does belong to the general paradigm. The Empirical Bayes Method(EBM)




has a long, and sometimes philosophically confused past, a vibrant present,
and an uncertain future. We consider these aspects in turn.

‘paét

Somewhat ironically, the history of empirical Bayes method is not particu-
larly Bayesian and certainly has little in common with the traditional, subjec-
tivist Bayesian viewpdint. As noted above, essentially there were attempts
by frequentist decision theorists to use Bayesian tools to produce decision
rules having good frequentistr (not Bayesian) properties (Robbins 1955).
Stein(1955) showed that in the case where y;|0; ~ N(6;,02), i = 1,2,--,n
and o2 is assumed known, the maximum likelihood estimator bi(y) = ui is
inadmissible as an estimator of §;. That is, under average squared error loss
there must exist another estimator with frequentist risk no larger than o2 for
every possible § value. This dominating estimator was obtained by James and

Stein(1961) as

éiJS(Y) = (1 - (_73”_;_2”)2_di)yi_ :

The connection to EB was provided Iater in a celebrated series of papers.by
Efron and Morris(lQ'?l,1972,1973,1975,1977). Amongst many other things,
these authors showed that 875 is exactly the EB point estimator obtained un-
der the assumption that 6;{7% ~ N(0, 7?) where 72 = (%) o? and B= ;ﬁ%
is estimated by B = (n —2)0?/ || y |2

Present

The cumulative impact of empirical Bayes methods on statistical applica-
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tions continues to be enormous. Statisticians and users of statistics, many
of whom were trained to distrust Bayesian methods as overly subjective and
theoretically mysterious, can nonetheless often appreciate the value of borrow-
ing strengh from similar but independent experiments. The empirical Bayes
methods have, for example, enjoyed broad applications in the analysis of longi-
tudinal, survival, and spatially correlated data (Laird and Ware,1982; Clayton
and Kaldor, 1987). Efron (1996) develops an empirical Bayes (EB) approach to
combining likelihoods for similar but independent parameters 6;. Meshkani and
Billard(1992) and Billard and Meshkani(1995) using empirical Bayes method
to estimate the transition probability matrix for Markov chains. Other im-
portant EB works include Rohanathan(1993) on spatial statistics and Altman

and Casella(1995) on nonparametric growth curves.

Future
Returning to the theme of our opening sentence, one’s view of the future of

empirical Bayes method is indelibly tied to his /her view of its past and present,

‘as well as one’s own upbringing. With the widespread availability of Monte

Carlo Markov Chain (MCMC) tools such as the BUGS (Baeysian inference
using Gibbs sampling) software, Spiegelhalter (1995),‘ this produces a much
more pessimistic outlook for empirical Bayes method, since the need for such
appfoximations hés more or less vanished.

For categorical data, statistical methodology has only recently reached the




level of sophistication achieved early in 20th century by methodology for con-
tinuous data. In contingency tables, log-linear models and logistic models have
becpme increasingly popular tools for the analysis of data via frequentist and
Bayesian methods. The empirical Bayes analysis has not as fully developed for
inference about categorical data as in many other areas of statistics. An empir-
ical Bayesian approach in estimating cell probabilities lead to estimates which
usually are a combination of sample proportions and estirﬁated moments of the
prior. Leonard(1975) and Laird(1978) gave an alternative Bayesian approach,
focusing on parameters of the saturated log-linear model. For two-way tables,
~ Laird(1978) suggested én empiriéal Bayesian analysis, estimating parameters
by finding the value that maximizes an approximation to the marginal distri-
bution of the cell counts, evaluted a,f the observed data.

Here we present four case studies from political, acturial, medical, and be-
havoral sciences in order to illustrate how we can exploit the possibilities for
contingency tables, panel data Va,nd state space modelling of cross-classified

time series of counts via integration of the frequentist and Bayesian methods.

1.2 Some examples

Example 1-1:(Nazaret, 1987; Bayesian approach using pbsterior mode)
Nazaret ﬁsing the data from Upton (1977) as an example refers to the voting

transitions between 1964 and.1970 of a subset of members of a panel who
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remained, throughout that period, in a constituency contested by the Con-
servative, Labour and Liberal parties alone. The corresponding 4 x 4 x 4

array is given in Table 1-1, where A corresponds to the states ( Conservative, -

- Labour, Liberal, Abstention) in 1964, B corresponds to the states in 1966, and

C corresponds to the states in 1970.

Table 1-1: Observed counts for a panel of voters between 1964-1970

1964 (Conservative) 1964(Labour)
19'670 Con. | Lab. | Lib. | Ab. ;zgg Con. | Lab. | Lib. | Ab.
966 57 0 1 5 2 1 0 0

Con. Con.
4 2 0 0 7 52 3 10
Lt T o Lab. 1= 1|1
Lzb. - 0 0 0 L1b. n 0 3
Ab. Ab.
1964 (Liberal) 1964(Abstention)
izgg Con. | Lab. | Lib. | Ab. ig;g Con. | Lab. | Lzb. | Ab.
8 0 0 0 1 0 0 2
Con. Con.
1 5 2 0 0 1 0 0
L T3 Tz [0 Lab T T o
" Lib. 5 T Lib. - T T3
Ab. Ab. -

In this example, we can study, whether given the vote at the b‘egin.ing of a
peﬂod, the vote at the end of it is independent of the transition period, and
in this case we wish to explain voters behavior via Bayesiap approach in time.
Let {P;;} be the transition probabilities for each cell. We use, the poste-

rior mode method for estimating voters transition probabilities, P;jx. This




11

approach consists of three stages:

1. Under the saturated log-linear model with parameters i, fori = 1,2,-..  a

J=1,2,---,bk=1,2,--- ¢, ie.

7ijk=)\+/\;-4+,\§3+,\g+,\;‘}3,,_+/\{130

ik

the likelihood function is given by

ewp{ > Vi — N 9(7)},

ijk

where {y;ji} is the table of frequencies and N = 2 ik Yijk is the sample size.

D(y) = Ln (Z,-J-k ea:p(7,~jk)) plays the role of a normalizing constant.

2. To specify our prior distribution we argue as follows: in many cases the
researcher is in a position of weak knowledge about the effects defined in sat-
urated log-linear model. Here, we assume that the prior knowledge about the
effects can be described independently by means of exchangeable distributions.

Hence, we suppose the prior distribution of A, as the first main effect, given

the variance, o2, is

1
”(/\filaf) ~ ewp{_ﬁ Z(A? - ’\51)}

where ) is the average of the M. Accordingly, the density of A4, ... and
A5C, conditional on 62, o2, ..., 0723 is proportional to the product of multi-
variate normal densities.

3. Hence,

71'(/\;4, Tty ’\ﬁfclz, y),
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is the posterior distribution, where % = (0%,-++,0%3). Now, we will find those
values which maximize the posterior distribution. These are called posterior

modes. However, in this approach, .pijk are called expected voters transition

probabilities given a log-linear model.

Example i-2:(N tzoufras, 2000; Bayesian approach for contingency table)
Insurance companies often do not pay the outstanding claims as soon as they
occur. Instead, the claims are settled with a time delay which may be years
or, in some extreme cases, decades. Reserving for outstanding claims is of
central interest in actuarial practice and has attracted the attention of many
researchers because of the challenging stochastic uncertainties involved.
Mathematically, the problem can be formulated as follows. There exist data
with a structure given by Table 1-2 whére Ai;;i=1,2,---,r denote the acci-
dent years and B;,j =1,2,--- ,7 denote the year that the claim was settled.
In Table 1-2, n;; represents claim counts which were paid by the insurance
company with a delay of 7 — 1 years for accidents originated at year ; andA T;
denotes tile total number of accidents. Finally the inflation factor for each cell

is fi;, whigh is used to deflate the claim amounts, is also assumed to be known.
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Table 1-2: Structure of the outstanding claim counts data

B .
Bl B2 v Br total
Aj [y nyg nr | Ty
A A2 Nap. Mg T2 ‘
Ar N Tr

Many models and techniques have been proposed for the prediction of the lower
triangle of Table 1-2. Two of most broadly used models are the log-linear and
the log-normal ANOVA-type models; see Renshaw and Verrall (1994). Markov
et.al. (1996) provides a short review of the Bayesian methods and description
of its ap;;lica,tion. The following data came from a major Greek insurance
company. Tables 1-3 and 1-4 give the claim counts, the total counts for car

accidents and the inflation factor.

Table 1-3: The outstanding claim counts for a Greek Insurance

Company
Year | 1 2 3 4 5 6 7 |Total
1989 | 6622 1943 489 138 61 223 66| 9542
- 1990 6943 2133 632 154 162 390 10496

1991 | 8610 2216 736 651 256 12601
1992 | 9791 3167 1570 624 115565
1993 | 11722 3192 1773 | 17735
1994 13684 3664 . 19746

1995 | 13068 18600
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Table 1-4: Inflation factor for Greece
year ,1989 1990 1991 1992 1993 1994 1995 1996
Inflation | 100.0 120.4 143.9 166.6 190.6 214.2 235.6 257.0
(%)

Example 1-3:(Singh & Roberts, 1992; Bayesian approach for State Space
time series)

The éroblem of modeling and projecting cross-classified categorical time series
is quite common in the area of planning and policy decisions. The data are
generaly in the form of a fairly long-series of tabies of counts based on a large

number of observations at each point in time. For instance, the Canadian

- cancer mortality data series consists of annual counts for each province cross-

classified by cancer site, age and sex. Following Cox(1981) the time series
approach to non-normal and non-linear data, can be classified into two types,
namely, observation driven and parameter driven. In this example, the pro-
posed model is termed a State Space Generalized Linear Model (SSGLM) in
which the techniqﬁe of recursive algorithm is modified to suit the noﬁ—normal

and non-linear modeling. The SSGLM can be defined in terms of the following

two equations:

i) Cross-sectional behavior: For each ¢ = 1,2,---,T

{Yt=ﬂt+€t (1—4)

e =g(ue) = F
where ey, ~ N[0, Vi(11)], Cov(es, e5) = 0 for s < ¢, 0 is the vector of parame-

ters in the model, g(.) is a monotone differentiable link function, F; is a known
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m X r matrix and the functional form of V;(,) is assumed to be known.

ii) Longitudinal behaviour: For t = 2,3,..-, T
0. =G+ 1y
where G; is a known r X r transition matrix, and the errors v; are specified by

vy ~ N[0, W, Cov(i,v,) = 0, s<t

Cov(r,e5) =0, Cov(1,6;) = 0. s<t |

The covariance matrix W; is also assumed to be known. For fitting SSGLM, the
following algorithm has been proposed by whom for estimation of the model
parameters.

Estimation Algorithm

The Filtered and Iterative Weighted Least Squares(FIWLS) algorithm for es-
timating Or consists of two stages, each requiring a ‘seri‘es of iterative steps.
Stage I: Linearization for state space formulation

First transform Y; (responsé) to Z; for each t =1,2,---, T as

(i-1) _ _(i-1) _
Z, =1 + (dn,ldp: (Y, i) B0~

where

E(Zgi-l)) — ngi—l) — Eogf—l) (l _ 5)




