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We have seen the use of polynomials in the various areas of mathematics and

other sciences, in particular, those polynomials that their coefficients are re-

stricted with special conditions. There are not any general formulas regarding

the zeros of polynomials of degree more than four. So two important questions

about polynomials arise. The first is the problem of finding bounds for the zeros

of polynomials and the second is the number of the zeros of a polynomial in an

open disk. In this thesis, we first focus on the problem of bounding the zeros

of complex polynomials when their coefficients are restricted in various types.

Among them those polynomials that have coefficients in the closure of the unit

disk T, in particular, the Rudin-Shapiro polynomials, we introduce an annulus

containing all the zeros.

Finally, we look at the problem of finding upper bounds for the number of

zeros of some other type of complex polynomials that lie in an open disk centered

at z0 ∈ C with radius r > 0. All methods are used in this work are analytic with

tools in complex analysis.
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Introduction

The theory of finding bounds for the zeros of polynomials and the location of

zeros of polynomials has applications in several areas of contemporary applied

mathematics including root approximation, coding theory, electrical networks,

linear control systems, and signal processing. Because of these applications,

there is a need for obtaining better and better results in these matters. Gauss

and Cauchy were the earliest contributors in the study of these subjects, and

since then these subjects have been studied by many people. This thesis is de-

voted to the following problems:

i) Finding bounds for the zeros and the location of the zeros of polynomials.

ii) Providing upper bounds for the number of the zeros of polynomials in an open

disk, in particular, polynomials which have coefficients in a finite subset of the

complex plane.

The first chapter, we begin with an introduction to the theory of polynomials

and some of their properties.

In chapter two, we introduce a special type of trigonometric polynomials

called the Rudin-Shapiro polynomials and then we provide some basic properties

of them.

In chapter three, we present an annulus that contains all the zeros of Little-

wood polynomials and we prove results on bounds for the zeros and also the lo-
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cation of zeros of complex polynomials which their coefficients are restricted with

special conditions such as the polynomial p(z) = anz
n+an−1z

n−1 + · · ·+a1z+a0

whenever |ai| ≤ |an| for all i = 0, · · · , n − 1 and the monic polynomial p(z) =

zn + an−1z
n−1 + · · ·+ a1z + a0 whenever |ai| ≤ |a0|, for every i = 1, · · · , n− 1.

At the end, we look at the problem of finding the number of the zeros in an

open disk of complex polynomials which their coefficients are in the closed unit

disk.
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Chapter 1

Introduction to Polynomials



1 Introduction to Polynomials

Polynomials pervade mathematics, and much that is beautiful in mathematics is

related to polynomials. Virtually every branch of mathematics, from algebraic

number theory and algebraic geometry to applied analysis, Fourier analysis, and

computer sciences, has its corpus of theory arising from the study of polynomials.

This chapter serves as a general introduction to the theory of polynomials and

the necessary preliminaries for our work. Also in this chapter, we state and prove

some basic properties of polynomials. Undoubtedly, the most basic and impor-

tant theorem concerning polynomials is the Fundamental Theorem of Algebra.

This theorem, in fact, tells us that every polynomial factors completely over the

complex numbers. There are many proofs of this theorem based on elementary

properties of complex functions. The focus for this thesis is the polynomial of

a single variable. Highlights of this chapter include: Descartes’ rules of sign,

Sturm’s Theorem, Rouché’s Theorem, Fundamental Theorem of Algebra, and

Cauchy’s Theorem.

1.1 Preliminaries definitions and notations

Definition 1.1.1. A function of a single variable t is a polynomial on its domain

if we can put it in the form

p(t) := ant
n + an−1t

n−1 + · · ·+ a1t+ a0,

where an, an−1, · · · a1, a0 are constants.

The constants an, an−1, · · · a1, a0 are called the coefficients of the polynomial
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p(t) and the nonnegative integer n is called degree of p(t) if n 6= 0.

A zero (root) of a polynomial p(t) is any number r for which p(r) = 0.

Throughout this thesis we use the following notations.

The symbols R and C use for the set of real and complex numbers, and also

R[x] and C[z] use for the set of all real polynomials with coefficients in R and

all complex polynomials with coefficients in C, respectively. The notation T will

denote the unit circle in the complex plane which can be identified with the

interval [−π, π). Finally, D(z0, r) is used for the open disk in the complex plane

centered at the point z0 with radius r > 0.

Definition 1.1.2. The polynomial p(t) = ant
n+an−1t

n−1 + ...+a1t+a0, ak ∈ C

and an 6= 0 is called monic if its leading coefficient an equals 1.

Definition 1.1.3. A trigonometric polynomial of degree n is any function defined

on R by

Pn(t) =
a0
2

+
n∑
k=1

(ak cos(kt) + bk sin(kt)) ,

where ak’s and bk’s are complex numbers.

Because of Euler’s formulas we also can write this as follows:

Pn(t) =
n∑

k=−n

cke
ikt,

where for every 0 ≤ k ≤ n (letting b0 = 0)

ck = (ak − ibk)/2, c−k = (ak + ibk)/2.

Obviously trigonometric polynomials are 2π-periodic functions. Moreover if a

sequence of trigonometric polynomials converges pointwise to a complex-valued

function f on R, then f is also 2π-periodic, i.e. f(t+ 2π) = f(t) for all t ∈ R.
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1.2 A short history of polynomials

Historically, questions relating to polynomials, for example, the solution of poly-

nomial equations, gave rise to some of the most important problems of the day.

The subject is now much too large to attempt an encyclopedic coverage. The

importance of the solution of polynomial equations in the history of mathematics

is hard to overestimate. The Greeks of the classical period understood quadratic

equations (at least when both roots were positive), but could not solve cubics.

The explicit solutions of the cubic and quadratic equations in the sixteenth cen-

tury were due to Niccolo Tartaglia (ca 1500-1557), Ludovico Ferrari (1522-1565),

and Scipione del Ferro (ca 1465-1526) and were popularized by the publication

in 1545 of the “Ars Magna ”of Girolamo Cardano (1501-1576). The exact pri-

orities are not entirely clear, but del Ferro probably has the strongest claim

on the solution of the cubic. These discoveries gave western mathematics an

enormous boost in part because they represented one of the first really major

improvements on Greek mathematics. The impossibility of finding the zeros of

a polynomial of degree at least 5, in general, by a formula containing additions,

subtractions, multiplications, divisions, and radicals would await Niels Henrik

Abel (1802-1829) in his 1824 publication of “On the Algebraic Resolution of

Equations. ”Indeed, so much algebra, including Galois theory, analysis, and par-

ticularly complex analysis, is born out of these ideas that it is hard to imagine

how the flow of mathematics might have proceeded without these issues being

raised. For further history, see [11].
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1.3 Some basic results on polynomials

There are no general formulas on the zeros of polynomials of degree more than

four. So root finding for them resort to numerical methods, but there are closed-

form formulas for roots of low order polynomials. Here we do not mention them,

for more details for roots of polynomials of degree up to four see [1].

Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a polynomial of degree n.

The Fundamental Theorem of Algebra states that p has n real or complex zeros

(counting multiplicities). If the coefficients a0, · · · , an are real, then the complex

zeros occur in conjugate pairs, but if the coefficients are complex, the complex

zeros need not be related.

Using Descartes’ rules of sign, we can count the number of real positive zeros

that p(x) has. More specifically, let mp be the number of variations in the sign

of the coefficients an, an−1, · · · , a0 (ignoring coefficients that are zero), then we

have the Descartes’ rules of sign as follows:

Theorem 1.3.1. (Descartes’ rules of sign) Let np be the number of real

positive zeros of the polynomial p and mp be the number of variations in sign of

the coefficients of p. Then

(i) np ≤ mp,

(ii) mp − np is an even integer.

Similarly, the number of real negative zeros of p(x) is related to the number

of sign changes in the coefficients of p(−x).

Example 1.3.2. Consider the polynomial p(x) = x4 + 2x2 − x− 1. Since mp = 1,

so np is either 0 or 1 by rule (i), but by rule (ii) mp − np must be even. Hence

np = 1. Now look at p(−x) = x4 + 2x2 + x− 1. Again, the coefficients have one

variation in sign, so p(−x) has one positive zero. In other words, p(x) has one

negative zero.
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To summarize, simply by looking at the coefficients, we conclude that p(x) has

one positive real zero, one negative real zero, and two complex zeros as a conju-

gate pair.

Descartes’ rules of sign still leaves an uncertainty as to the exact num-

ber of real zeros of a polynomial with real coefficients, for example, p(x) =

x4−x3 +x2−x+ 1. The problem of finding an exact test for the number of real

zeros of a polynomial equation was solved in a surprising simple way in 1829 by

the French mathematician Charles Sturm (1803-1855). He showed a method to

count the real zeros which lie within any given interval.

Let f(x) be a polynomial in R[x]. Recall that α is a multiple root of f if

(x − α)2 divides f , otherwise, α is said a simple root. If f has a multiple root

then we can write f = (x − α)kg(x) with (x − α, g) = 1, then by the product

rule we have (f, f ′) = (x − α)k−1(g, g′) and f/(f, f ′) = (x − α).g/(g, g′). Now

it follows that α is a simple root of f/(f, f ′). Moreover as an easy consequence

of the product rule is that f has a multiple root if and only if f and f ′ are not

relatively prime.

As a consequence of this, if f and f ′ are not relatively prime, then f/(f, f ′)

has the same set of zeros as f , but each is a simple root. Therefore, we can then

assume that f and f ′ are relatively prime and that each root of f is simple. The

derivative f ′ then vanishes for none of these roots and (f, f ′) = 1.

Denote f(x) by f0(x) and its derivative f ′(x) by f1(x) and use the Euclidean

Algorithm to find the greatest common divisor of f and f ′, calling the quo-

tients resulting from the successive divisions q1, q2,...,qk−1 and the remainders

−f2, −f3,...,−fk (Note the unconventional choice of sign for the remainders!),
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therefore

f0(x) = q1(x)f1(x)− f2(x),

f1(x) = q2(x)f2(x)− f3(x),

...

fk−2(x) = qk−1(x)fk−1(x)− fk(x),

where fk is a constant, and for 1 ≤ i ≤ k, fi(x) is of degree lower than that of

fi−1(x).

Note that the last non-vanishing remainder fk (or fk−1 when fk = 0) is the

greatest common divisor of f(x) and f ′(x), and consequently possesses the same

sign over the whole interval.

The sequence f0, f1, · · · , fk (or fk−1 when fk = 0) is called the Sturm sequence

for the polynomial f and in this connection are called Sturm functions.

Theorem 1.3.3. (Sturm’s Theorem) Let f(x) be a polynomial in R[x]. Then

the number of distinct real zeros of f(x) in (a, b) is Va-Vb, where Vc denotes the

number of variations in sign of the sequence f0(c), f1(c) · · · , fk−1(c), fk.

In fact, we can multiply f by a positive constant, or a factor involving x,

provided that the factor remains positive throughout (a, b), and the modified

function can be used for computing all further terms fi of the sequence.

Example 1.3.4. Using Sturm’s Theorem to isolate the real zeros of the equation

x5 + 5x4 − 20x2 − 10x+ 2 = 0.
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We first compute the Sturm functions

f0(x) = x5 + 5x4 − 20x2 − 10x+ 2,

f1(x) = x4 + 4x3 − 8x− 2,

f2(x) = x3 + 3x2 − 1,

f3(x) = 3x2 + 7x+ 1,

f4(x) = 17x+ 11,

f5(x) = 1.

By setting x = −∞, 0,∞, we see that there are three negative zeros and two

positive zeros. All zeros lie between −10 and 10, in fact, between −5 and 5. We

then try all integral values between −5 and 5. The following table records the

work:

−∞ -10 -5 -4 -3 -2 -1 0 1 2 5 10 ∞

f0 - - - - + - - + - + + + +

f1 + + + + - - - - - + + + +

f2 - - - - - + + - + + + + +

f3 + + + + + - - + + + + + +

f4 - - - - - - - + + + + + +

f5 + + + + + + + + + + + + +

var. 5 5 5 5 4 3 3 2 1 0 0 0 0

Thus there is a zero in (−4,−3), a zero in (−3,−2), a zero in (−1, 0), a zero

in (0, 1), and a zero in (1, 2).

Theorem 1.3.5. (Liouville’s Theorem) A bounded entire function is con-

stant.
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The Fundamental Theorem of Algebra appears to have been given its name by

Gauss, although the result was familiar long before; it resisted rigorous proof by

d’Alembert (1740), Euler (1749), and Lagrange (1772). It was more commonly

formulated as a real theorem, namely; every real polynomial factors completely

into real linear or quadratic factors. (This is an essential result for the integration

of rational functions.) Girard has a claim to priority of formulation. In his

“Invention Nouvelle en L’ Algebra ”of 1629 he wrote “every equation of degree n

has as many solutions as the exponent of the highest term.”Gauss gave the first

satisfactory proof in 1799 in his doctoral dissertation, and he gave three proofs

during his lifetime. His first proof was, titled “A new proof that every rational

integral function of one variable can be resolved into real factors of the first or

second degree”, was in fact the first more or less satisfactory proof.

Theorem 1.3.6. (Fundamental Theorem of Algebra) Every nonconstant

polynomial has at least one complex zero.

This major theorem prove directly from Liouville’s Theorem. A very general

class of bounds on the magnitude of roots is implied by the Rouché Theorem.

Theorem 1.3.7. (Rouché’s Theorem) Suppose that f and g are analytic in-

side and on a simple closed path γ (for most purposes we may use γ a circle).

If

|f(z)− g(z)| < |f(z)|

for every z ∈ γ, then f and g have the same number of zeros inside γ (counting

multiplicities).

As an application, Rouché’s Theorem can be used to give a short proof of the

Fundamental Theorem of Algebra as follows:
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Let p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial of degree n, choose

R > 1 so large that:

|a0 + a1z + · · ·+ an−1z
n−1| < |an|Rn = |anzn| for |z| = R.

Since the function f(z) = anz
n has exactly n zeros inside the circle |z| = R, so

by Rouché Theorem p(z) has exactly n zeros inside this circle.

The following theorem is a quantitative version of the Fundamental Theorem

of Algebra due to Cauchy [1829]. We offer a proof that does not assume the

Fundamental Theorem of Algebra, but does require some elementary complex

analysis. The proof can be found in [7].

Theorem 1.3.8. The polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, ak ∈ C, an 6= 0,

has exactly n zeros. These all zeros lie in the open disk centered at the origin

with radius r, where

r := 1 + max
|ak|
|an|

, k = 0, · · · , n− 1.

Proof. We may assume that a0 6= 0, or we may first divide by zk for some k.

Now observe that

g(x) := |a0|+ |a1|x+ · · ·+ |an−1|xn−1 − |an|xn

satisfies g(0) > 0 and limx→∞ g(x) = −∞.

So by the Intermediate Value Theorem, g has a zero in (0,∞). Let s be this

zero. Then for |z| > s,

|p(z)− anzn| ≤ |a0|+ |a1z|+ · · ·+ |an−1zn−1| < |anzn|.
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Now by Rouché Theorem p(z) and anz
n have exactly n zeros in any disk of radius

greater than s. It remains to observe that if x ≥ r, then g(x) < 0 and then s < r.

Indeed for

x ≥ 1 + max
|ak|
|an|

, k = 0, ..., n− 1,

we have

g(x) ≤ |an|xn
(
−1 +

(
max

|ak|
|an|

) n−1∑
k=0

xk−n

)

< |an|xn
(
−1 +

(
max

|ak|
|an|

)
1

x− 1

)
≤ 0

Theorem 1.3.9. (Cauchy’s Theorem) Given a polynomial f(x) = anx
n +

an−1x
n−1 + · · ·+ a1x+ a0, an 6= 0, define the polynomials

p(x) = |an|xn − |an−1|xn−1 − · · · − |a0|,

and

q(x) = |an|xn + |an−1|xn−1 + · · ·+ |a1|x− |a0|.

Using Descartes’ rules of sign, p(x) has exactly one real positive zero R and

q(x) has exactly one real positive zero r. Then all the zeros of f(x) lie in the

annulus

r ≤ |z| ≤ R.

We can use the above bounds as heuristics that give us a way of localizing

the possible zeros of a polynomial. By localizing the zeros, we can guide the

initial guesses of our numerical root finders. The exact relationship between the

coefficients of a polynomial and the location of its zeros is very complicated. Of
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course, the more information we have about the coefficients, the better results

we can hope for. The following pretty theorem emphasizes this subject. This

theorem presented in [7].

Theorem 1.3.10. (Eneström - Kakeya). If

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

with

a0 ≥ a1 ≥ · · · ≥ an > 0,

then all the zeros of p lie outside the open unit disk.

Proof. Consider the polynomial

(1− z)p(z) = a0 + (a1 − a0)z + · · ·+ (an − an−1)zn − anzn+1.

We have

|(1− z)p(z)| ≥ a0 − [(a0 − a1)|z|+ · · ·+ (an−1 − an)|z|n + an|z|n+1].

Since ak−ak+1 ≥ 0, the right-hand expression above decreases as |z| increases.

Thus for |z| < 1, we obtain

|(1− z)p(z)| > a0 − [(a0 − a1) + · · ·+ (an−1 − an) + an] = 0,

and the result follows.

Corollary 1.3.11. Suppose that

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

is a polynomial of degree n with ak > 0 for each k. Then all the zeros of p lie in

the annulus

r1 ≤ |z| ≤ r2,
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where for k = 0, · · · , n− 1,

r1 = min
ak
ak+1

and r2 = max
ak
ak+1

.

1.4 Littlewood polynomials

In this section, we define the Littlewood polynomials and state some results

about them. In chapter three, we introduce an annulus containing all the zeros

of Littlewood polynomials.

Let Un ⊂ C[z] be the class of all degree n polynomials h

h(z) =
n∑
k=0

akz
k,

so that |ak| = 1 for all k.

We consider Ln ⊂ Un so that if h ∈ Ln, then ak = ±1 for all k.

Definition 1.4.1. The members of Un and Ln are called Unimodular and Lit-

tlewood (or sometimes real unimodular) polynomials, respectively.

A special type of Littlewood polynomials are the Rudin-Shapiro polynomials,

which we will introduce them in the next chapter.

The next theorem proved in [9] provides upper bounds for the number of real

zeros of those polynomials that their coefficients are restricted in the closed unit

disk.

Theorem 1.4.2. (i) There is an absolute constant c1 > 0 such that every poly-

nomial p of the form

p(x) =
n∑
j=0

ajx
j, aj ∈ C, |a0| = 1, |aj| ≤ 1,
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has at most c1
√
n zeros in [−1, 1].

(ii)There is an absolute constant c2 > 0 such that every polynomial p of the form

p(x) =
n∑
j=0

ajx
j, aj ∈ C, |an| = 1, |aj| ≤ 1,

has at most c2
√
n zeros in R\(−1, 1).

(iii) There is an absolute constant c3 > 0 such that every polynomial p of the form

p(x) =
n∑
j=0

ajx
j, aj ∈ C, |a0| = |an| = 1, |aj| ≤ 1,

has at most c3
√
n real zeros.

Suppose that p is a complex polynomial of degree n with complex coefficients

as

p(z) :=
n∑
j=0

ajz
j.

We will consider the following three types of the above polynomial and in chapter

three we prove some properties of these types of polynomials.

Type 1. |a0| = 1 and |ak| ≤ 1 for every k ∈ {1, 2, · · · , n}.

Type 2. |an| = 1 and |ak| ≤ 1 for every k ∈ {0, 1, · · · , n− 1}.

Type 3. |a0| = |an| = 1 and |ak| ≤ 1 for every k ∈ {1, 2, · · · , n− 1}.

Borwein, Erdélyi, and Littmann [10] proved that any polynomial of type 3

has at least 8
√
n log n zeros in disk with center on the unit circle and radius

33π logn√
n
.
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Chapter 2

Rudin-Shapiro Polynomials


