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ABSTRACT

INFINITE DIMENSIONAL GARCH MODELS

BY:

ZAHRA SAJJADNIA

This thesis has two parts. In the first part, we introduce and study the Hilber-

tian Generalized Autoregressive Conditional Heteroscedastic models and develop

an appropriate calculus for their time domain analysis. Following recent advances

in functional data theory and operatorial statistics, there are growing interests in

processes with values in Hilbert spaces. Translating data into functions and then

applying functional data techniques and models appear to be more effective than

the classical data analysis in time series. We discuss existence and stationarity

of Hilbertian Generalized Autoregressive Conditional Heteroscedastic models, and

present a new method of parameter estimation, based on the principal components,

in Functional Data Analysis. We also do a simulation procedure to generate val-

ues for certain Hilbertian Generalized Autoregressive Conditional Heteroscedastic

models.

In the second part, we give a survey on Pettis conditional expectation of weak

random elements in non-separable Banach spaces. We establish basic ingredients

for the calculus of the Pettis conditional expectation of weak first-order scalarly

measurable random elements with values in the dual space of a non-separable Ba-

nach space.We prove the continuity for the conditional expectation. We provide

examples and calculating the conditional expectation of scalarly measurable but not
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strongly measurable random elements with values in some non-separable Banach

spaces.
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Chapter 1



Introduction

1.1 Aims

This thesis has two parts. In the first part (Chapter 1 and 2), we are going to in-

troduce Hilbertian GARCH models. We will discuss existence and stationarity of

these processes. We will present a new method of parameter estimation based on

principal components in functional data models and simulate HGARCH process in

the special case.

In the second part ( Chapter 3), we are going to do a survey on Pettis conditional

expectation of weak random elements and prove the convergence theorem for this

conditional expectation. Finally, in two examples, we will calculate the conditional

expectation of scalarly measurable, but not strongly measurable, random elements

with values in some non-separable Banach spaces. Our idea to do this part of thesis,

is to prepare necessary tools to define weak HGARCH models.

The main open problem for future work is to use Pettis conditional covariance to

define weak Hilbertian GARCH models.

1.2 Preliminaries

In this chapter, we have a short review on the topics which will be used throughout

this thesis. Some definitions and theorems which are needed in the next chapters

are given. Chapter 2, is indeed the main chapter of this thesis. In this chapter,

we will introduce the Hilbertian GARCH Models. In Chapter 3, the conditional

expectation of weak random elements with values in non-separable Banach spaces

will be introduced. We provide certain functional analysis concepts, univariate and

2



multivariate GARCH models in Appendixes.

1.2.1 Notations

Let Z,C and R stand for the set of integers, complex numbeers and real numbers,

respectively. We denote a as the complex conjugate of a, and X,Y are used for

Banach spaces with the norms ∥.∥X and ∥.∥Y respectively. We use H to show the

Hilbert space with an inner product ⟨., .⟩H and the norm ∥.∥H. Small Greek letters

such as ξ, η and ζ are used for Banach (Hilbert)-valued random variables which are

called random elements, we also use capital English letters such as A,B and C for

operators. The notation A∗ stands for the adjoint of operator A. The notation B(X)

stands for the Borel σ-field, the smallest σ-field which is generated by open subsets

of X . Also ⟨x∗, x⟩ is used to denote x∗(x), when x ∈ X , x∗ ∈ X∗, and X∗ is the

dual space of X . We use the notations E for expectation of real (complex)-valued

random variables, EB for expectation of random elements in the sense of Bochner

integral and EP for the expectation of scalarly measurable random elements in the

sense of Pettis integral. The notation of the tensor product ,⊗, will be extensively

used in this thesis.

The notation L(X, Y ) stands for the space of all bounded linear operators from

X into Y , and we denote L(X,X) by L(X) whenever ther is no ambiguity. The

symbols Ut, ϵt and Zt are used for univariate stochastic processes and Ut, ϵt and Zt

are used for multivariate stochastic processes.

1.2.2 Tensor Products

In this part, we define the tensor product of two vectors, two matrices, two elements

of a Hilbert space, two operators and two vector spaces.

1.2.2.1 The Tensor Product of two Vectors

The outer product u ⊗ v is equivalent to a matrix multiplication uv′, provided that

u is represented as a m × 1 column vector and v as a n × 1 column vector (which

3



makes v′ a row vector) where v′ is the transpose of v. For instance, if m = 4 and

n = 3, then

u⊗ v = uv′ =


u1

u2

u3

u4


[
v1 v2 v3

]
=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3

 .

1.2.2.2 The Tensor Product of Two Matrices

Let A and B be k × l and m × n matrices respectively. The tensor (Kronecker)

product of matrices A and B is given by the matrix

A⊗B =


A11 · · · A1l

... . . . ...

Ak1 · · · Akl

⊗

B11 · · · B1n

... . . . ...

Bm1 · · · Bmn

 =


A11B · · · A1lB

... . . . ...

Ak1B · · · AklB

 ,
with the entires

AijB =


AijB11 · · · AijB1n

... . . . ...

AijBm1 · · · AijBmn

 .
1.2.2.3 The Tensor Product of two elements in a Hilbert space

The tensor product of two elements of a Hilbert space is defined as follows.

For x, y, h ∈ H, x⊗ y is an operator in L(H) which is defined by

(x⊗ y)h = ⟨x, h⟩Hy. (1.1)

1.2.2.4 The Tensor Product of Two Hilbert Spaces

Let H1 and H2 be two separable Hilbert spaces. We say the space HS(H1,H2) is

the Hilbert tensor product of the separable Hilbert spaces H1 and H2. We denote

this space by

H1⊗̂H2 = HS(H1,H2),

and its elements by

M =
∞∑

m,j=1

amjem ⊗ fj =
∞∑

m=1

em ⊗ ym,
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where

{amj}m,j ∈ l2(N× N),

and

ym =
∞∑
j=1

amjfj,

when the orthonormal bases {em} and {fj} of H1 and H2 have been chosen and

where l2(N× N) is the space of double indices square summable sequences.

We remark that the scalar product of H1⊗̂H2 satisfies

⟨⟨x1 ⊗ y1, x2 ⊗ y2⟩⟩ = ⟨x1, x2⟩H1⟨y1, y2⟩H2 .

Here we state the theorem about the tensor product of Hilbert spaces.

Theorem 1.1 Let H1,H2 and H3 be three separable Hilbert spaces. Then

(i) (H1⊗̂H2)⊗̂H3 is isometric to H1⊗̂(H2⊗̂H3).

(ii) H1⊗̂R is isometric to H1.

(iii) H1⊗̂H2 is isometric to H2⊗̂H1.

(iv) (H1⊗̂H2)⊗̂H3 is isometric to (H1⊗̂H3)× (H2⊗̂H3).

For proof see [2] Chapter 12, Section 3, Proposition 1.

1.2.2.5 The Tensor Product of Two Linear Operators

Let Hi, i = 1, ..., 4 be separable Hilbert spaces and consider the operators A ∈

L(H1,H2) andB ∈ L(H3,H4). We denote by A⊗B the continuous linear operator

from H1⊗̂H3 to H2⊗̂H4, which is defined by (A ⊗ B)M = BMA∗, where M is

a linear operator from H1 into H3, A ⊗ B is called the tensor product of A and B.

In the following theorem some properties of tensor product of linear operators are

mentioned.

Theorem 1.2 Let A ∈ L(H1,H2) and B ∈ L(H3,H4). The operator A ⊗ B ∈

L(H1 ⊗H2), (H3 ⊗H4) has the following properties:

(i)∥A⊗B∥ ≤ ∥A∥∥B∥.

(ii) (A⊗B)(x⊗ y) = Ax⊗By for each x ∈ H1 and y ∈ H3.

(iii) (A ⊗ B)∗ = A∗ ⊗ B∗. In particular, if A and B are both left (right)

5



invertible, then A ⊗ B is left (right) invertible. If A and B are isomorphism then

A ⊗ B is also isomorphism and the tensor product of two projectors is a projector

too.

For proof see [2] Chapter 12, Sction 4, Proposition 1.

1.2.3 X-valued Random Variables

A pair (Ω,F), where Ω is a non-empty set and F is a σ-field of subsets of Ω, is

called a measurable space and sets from F are called measurable sets. A measure

is a real valued, non-negative, and countably additive set function µ, defined on F

such that µ(Φ) = 0. A measure µ is called probability measure if µ(Ω) = 1 and

usually is denoted by P . Also the triple (Ω,F , P ) is called the probability space.

Definition 1.1 Let (Ω,F) and (X,B(X)) be measurable spaces. A mapping ξ :

Ω −→ X is said to be F/B(X) measurable or strongly measurable if the inverse

image ξ−1(B) lies in F for each B ∈ B(X).

After defining measurable mappings, we can defineX-valued random variables.

Definition 1.2 Let (Ω,F) and (X,B(X)) be measurable spaces. A measurable

mapping ξ : Ω −→ X is called an X-valued random variable or a random element

in (X,B(X)). Also we shall say that ξ is a random element in X.

From now on and throughout this thesis, we use the expression random elements

for Banach (Hilbert)-valued random variables.

For random element ξ in X , ⟨x∗, ξ⟩ for each x∗ ∈ X∗, is a complex or real-

valued random variable and ∥ξ∥X is a real valued random variable.

Another kind of measurability, used for random elements in this thesis, is the

following.

Definition 1.3 A random element ξ from Ω into X is called scalarly measurable if

the complex-valued random variable ⟨x∗, ξ⟩ is measurable, i.e. F/B(C) measur-

able for every x∗ ∈ X∗ .

6



For random elements in Banach space X , we can introduce the notion of order

of a random element in the following way.

Definition 1.4 The random element ξ : Ω −→ X has the weak order p or it is

of weak order p, (0 < p < ∞), if E |⟨x∗, ξ⟩|p < ∞ for each x∗ ∈ X∗, but if

E ∥ξ∥p < ∞, we shall say that it has the strong order p or it is of strong order p,

(0 < p <∞).

It can be shown that the strong order implies the weak one and the converse

implication is valid only if X is finite dimensional. See [8] and [77] for more on

this subject.

Let Łp(X,P ) stand for the space of all strongly measurable random elements

in X for which E∥.∥pX < ∞, p > 0; and Lp
w(X,P ), 1 ≤ p < ∞, stands for

the space of scalarly measurable weak random elements in X for which ∥.∥wp =

sup∥x∗∥≤1(E|⟨x∗, .⟩|p)1/p is finite. Also let L∞
w∗(X

∗, µ) denote the space of scalarly

measurable random elements ζ in X∗ equipped with the norm

∥ζ∥w∗

∞ = sup
∥x∥≤1

ess sup
ω∈Ω

|⟨ζ, x⟩|, x ∈ X, ζ ∈ X∗.

In the next definition, we define independency for random elements in X and

L(X).

Definition 1.5 Two random elements ξ and η are said to be independent if ⟨ξ, x∗⟩

and ⟨η, y∗⟩ are independent for all x∗, y∗ ∈ X∗; the independence is similarly

defined for finite or infinite families of random elements. Two random elements A

and B in L(X) are said to be independent if for all x and y in X , Ax and By are

independent random elements in X .

1.2.3.1 Expectation

In this subsection, we define two kinds of expectations for random elements.

Definition 1.6 A measurable function ξ : Ω → X is called Bochner integrable if

there exists a sequence of simple functions ξn such that

limn→∞

∫
Ω

∥ξn − ξ∥ dµ = 0.

7



In this case we denote the Bochner integral of ξ over the set E with respect to µ by

(B)−
∫
E
ξ dµ which is defined for each E ∈ F by

(B)−
∫
E

ξ dµ = limn→∞

∫
E

ξn dµ

where
∫
E
ξn dµ is defined in the obvious way.

If ξ is strongly measurable and if
∫
∥ξ∥ dµ < ∞ then the Bochner integral of ξ

exists as an element of X . When µ(Ω) = 1- i.e. when µ is probability measure-

then
∫
Ω

ξ dµ is also called the expectation of ξ and is denoted by EBξ.

As seen in the Definition 1.6, EBξ exists only for strongly measurable ran-

dom elements. When the scalarly measurable weak random elements are used,

we present the following definition for the expectation.

Definition 1.7 A random element ξ : Ω → X is called Pettis integrable with respect

to µ, if

(i) ξ ∈ L1
w(X,µ),

(ii) For every E ∈ F , there exists an element ξE in X such that,

⟨x∗, ξE⟩ =
∫
E

⟨x∗, ξ⟩ dµ, for every x∗ ∈ X∗. (1.2)

The element ξE is called the Pettis integral of ξ over E with respect to the mea-

sure µ and it is denoted by (P)−
∫
E
ξ dµ. In particular, when µ is a probability

measure, ξΩ stands for the expectation of ξ and is denoted by EPξ.

If X is a reflexive Banach space, then every separably-valued random element

of weak order one is Pettis integrable, [77].

1.2.3.2 Conditional Expectation

In this subsection, we introduce conditional expectation given a σ -field for strong

and weak order random elements based on suitable integrations in Banach spaces.

Definition 1.8 For ξ ∈ Ł1(X,P ) and given G, a sub-σ-field in F , the conditional

expectation of ξ given G is defined to be a random element inX , denoted by EB[ξ|G],

which is measurable G and satisfies the equation

(B)−
∫
A

ξ dP = (B)−
∫
A

EB[ξ|G] dP, for all A ∈ G, (1.3)
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