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ABSTRACT

THE ZARISKI TOPOLOGY ON THE PRIME SPECTRUM OF
A MODULE

BY:
MOHAMMAD BAZIAR

Let M be a module over a commutative ring B. A submodule K of M
is called prime if K # M and whenever r € R and m € M satisfy rm € K
thenr € (K : M) or me M, where (K: M) ={re R: tMC K}. Clearly
this is a generalization of the notion of prime ideals of rings.

The prime spectrum spec(M) of M is the collection of all prime submod-
ules. We topologize spec(M) with the Zariski topology, which is analogous
to that on spec(R). Then define continuous map % from spec(M) to spec(R)
(where R = A—mﬁm) find condition that 9 is surjective, open, closed, injective
and homeomorphic.

We find base for Zariski topolog on spec(M), and prove this base and
spec(M) are quasi-compact.

We find subsets, Y of spec(M) that are irreducible, irreducible closed and
generic point for spec(M) and every irreducible closed subset of spec(M).

We prove that spec(M) is To-space iff is injective and find condition under

which spec(M) be a Ty and spectral space.
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CHAPTER I
INTRODUCTION

0. Literature Survey

- M. Hochster has characterized spectral spaces as quasi-compact Ty-spaces
W such that W has a quasi-compact open base closed under finite intersec-
tions and each irreducible closed subset of W has a generic point. We follow
the Hochster’s characterization closely in discussing whether spec(M) of a
module M is a spectral space. (6]

In 1984 Chin-pi-Lu wrote a paper about prime submodules of modules.
The purpose of this paper is to introduce interesting and useful properties of
prime submodules of modules and show various applications of the properties.
o)

In 1988 Z. A. El-Bast and P. F. Smith discussed the multiplication mod-
ules. [5]

In 1989 C. P. Lu discussed M-radicals of submodules, the M-radical of a
submodule N in a module M over a ring R is defined as the intersection of
all prime submodules. [10]

In 1992 J. Jenkins and P. F. Smith discussed, the prime radical of a

module over a commutative ring. In this paper they proved that for every




Dedekind domain R, an R-module M, the radical of M has a certain form.
g

In 1992 R. L. McCasland and M. E. Moore discussed about prime sub-
modules. According to this paper in many cases the conclusions about finitely
generated modules over a PID are shown to be valid for modules including
infinitely generated ones, over an arbitrary integral domain. [12]

Ih 1993 R. L. McCasland and P. F. Smith discussed prime submodules of
Noetherian modules. [13]

In 1994 T. Duraviel discussed a topology on spectrum of modules, that
he defines a topology on spectrum of R-modules by means of its prime sub-
modules and proves some results which are already known for spec(R). And
defines absolutely flat R-modules which is a generalization of an absolutely
flat ring and prove somes related results. [4]

In 1995 C. P. Lu discussed spectra of modules. The spectra of modules
are introduced and a useful relationship between spec(M) and spec(M,) are
gained. [11]

In 1997 R. L. McCasland, M. E. Moore and P. F. Smith discussed on the
spectrum of a module over a commutative ring. This paper investigates when
the spectrum of M consisting of all prime submodules of M has a Zariski
topology analogous to that for R. For finitely generated modules M this

occurs if and only if M is a multiplication module. {14]

1. The Scope of the Dissertation

Throught this dissertation, all rings R are commutative with identity and




all modules are assumed to be unitary.
Let R be a ring and let M be an R-module. A submodule K of M is
called prime if K # M and whenever r € R and m € M satisfy rm € K then

re (K :M)ormée K, where
(K:M)={rcR: rMCK}.

For any module M over a commutative ring R with identity the prime
spectrum spec(M) of M is the collection of all prime submodules. In section
2 of this chapter we study some properties of prime submodules of a module.
Then in section 3 we define the Zariski topology on spec(R) and extend this
notion to modules and define Zariski topology and quasi- Zariski topology
on spec(M), then we study some relationship between spec(M) = X and
spec(x,;%—l—)) = X~&,

In chapter II we define the natural map ¢ : spec(M) — spec(#kM)) by
Y(P) = (T—_IVI—) and find conditions under which 1 is injective, surjective,
open, closed, or homeomorphic. We also consider some relationship between
X and X® with respect to connectedness. In section 2 of this chapter we
introduce quasi-compact base for spec(M).

In chapter III we find subsets, Y of X = spce(M) that are closed, ir-
reducible, and condition under which Y is irreducible closed subset of X,

then we find generic point for spec(M) and every irreducible closed subset

of spec(M).
M. Hochster [6] has characterized spectral spaces as quasi-compact Top-

spaces W such that W has a quasi-compact open base closed under finite

intersections and each irreducible subset of W has a generic point. In chap-




ter IV we follow the Hochster’s characterization closed in discussing whether
spec(M) of a module M is a spectral space. The injectivity and the surjec-
tivity of the natrual map ¥ of X have important roles for X being spectral.
We prove that X is Ty-space iff 4 is injective iff X has at most one p-prime
submodule for every p € spec(R). We show that if M is a finitely generated
nonzero R-module, then X is a spectral space iff M is a multiplication mod-
ule iff X is homeomorphic to spec( W) iff 9 is injective. We also consider
the following two cases:

a) The image of 9 is a closed subset of spec(ﬁy), and

b) X is a non-empty finite set.

For each of these cases, we prove that X is a spectral space iff 9 is injective.

2. Prime Submodules

Let M be an R-module. For any submodule N of M we denote the

annihilator of % by (N : M), i.e.

(N:M)={reR: rMCN}.

Definition 1.2.1. Let R be aring and let M be an R-module. A submodule
K of M is called prime if K # M and whenever r € Rand me M satisfy
rm € K thenr € (K:M)orme K.

Clearly, any prime ideal of R is a prime R-submodule of the R-module

R.

Example 1.2.2. The torsion submodule (M) of M over an integral domain




is a prime submodule if T(M) # M becauseif rm € T(M) forsome0 #r € R
and some m € M, then there exists 0 # r' € R such that r'rm = 0. Since R is

a domain, 77’ # 0 and so m € T(M). Clearly, if r = 0 then r € (T'(M) : M).

Lemma 1.2.3. A submodule K .of an R-module M is prime if and only if
P = (K : M) is a prime ideal of R and the (£)-module ¥ is torsion free.

Proof. Let K be a prime submodule of M. Also suppose that rr' € P and
r ¢ P for some r,7' € R. Then rr'M C K and since r ¢ P, "M C K. Thus

r' € P and P is a prime ideal of R. Now we know that % is an %-module,

because P = Ann(}f). Now suppose that (r + P)(m + K) = K for some

r+ P € % and m+ K € %g— therefore rm + K = K and hence rm € K.
Consequently r € Porm € Kie. r+ P = P or m+ K = K. Thus the
%-module % is torsion-free. Conversely, we assume that rm € K and r ¢ P,
where r € R and m € M. Hence rm + K = (r + P)(m+ K) = K. Since ¥
is a torsion-free %-module then m + K = K and so m € K. It follows that
K is a prime submodule of M. O

If K is a prime submodule of M and p = (K : M) then K is called a

p-prime submodule of M.

Example 1.2.4. If R is a simple ring, then every non-zero R-module M of R
is torsion-free, since for any 0 # z € M, ann(z) # R and hence Ann(z) = 0.
Also for any proper submodule N of M, (N : M) = 0 and since (0) is the

only maximal ideal of R, (0) is prime. It follows that a simple ring R has




the property that every proper submodule N of M is prime. O

Corollary 1.2.5. Let K be any submodule of an R-module M such that
(K : M) is a maximal ideal of R. Then K is a prime submodule of M. In
particular, mM is a prime submodule of an R-module M for every maximal
ideal m of R such that mM # M.

Proof. Since (K : M) # R then K # M and since (K : M) = m is a
maximal ideal of R then % is a field and 1}(—" is a vector space over %. Now if
7Z = 0 and 7 # 0, where F = r + M for some r € R and z = z + K for some

z € M, then r~1¥Z = 0 and so £ = 0. Thus %’— is torsion-free %-module. It
follows that K is a prime submodule of M by Lemma 1.2.3. Now if for some
maximal m of R mM # M then it is clear that (mM : M) = m. Thus mM

is a prime submodule of M. O

Example 1.2.6. Every proper subspace of a vector space is prime.

Proof. Let V be a vector space over the field F and W be a proper subspace
of V. Since rV =V for every 0 # r € F then (W : V) =0 and since < 0 >
is a maximal ideal of F therefore by Corollary 1.2.5 W is a prime submodule

of V.

Corollary 1.2.7. Let N be a proper submodule of an R-module M and let
m be a maximal ideal of R. Then N is m-prime if and only if mM C N.
Consequently, if N is an m-prime submodule of M, then so is every proper
submodule of M containing N.

Proof. The necessity is trivial. Conversely if mM C N then m C (N: M)

and since N # M hence (N : M) # R therefore m = (N : M). It follows




that N is an m-prime submodule of M by Corollary 1.2.5. 0O

Proposition 1.2.8. If N is a maximal submodule of an R-module M, then

(N : M) is a maximal ideal of R and N is a prime submodule of M.

Proof. Let (N : M) C m C R, where m is an ideal of R. Since N is a
M :

maximal submodule of M, hence ¥ is a simple R-module. It implies that ¥ N

is cyclic and % = (z+ N)R for some z € M. Thus m(¥) = Morm(M) =o.
If m(%) = % then m(X) = (z + N)R and hence there exists r; € m and
yi+ N € % (vi € M) such that z + N = E r,-(E ¥i + N). On the other
=1 =1
t
hand, y; + E i(z + N), for some r' € R, therefore

n t

(z-(Qr)(Xr)z) + N 1“(2’: Z ri))(z + N) =0.

i=1 =1 =1
It follows that 1 — (L r)(Xr}) € Ann(¥) = (N : M) C m. Since iZ::l ri € m,
1=1—(En)Zr+Xnir; € msom = R. Now if m(¥) = 0, then
mM C N and som C (N : M) C m. Hence (N : M) = m. Therefore
(N : M) is a maximal ideal of R. By Corollary 1.2.5 N is a prime-submodule

of M. O

Remark 1.2.9. If m is a maximal ideal of a ring R, then not every m-prime
submodule of an R-module M is a maximal submodule. In Example 1.2.6
we can see that < 0 > is a maximal ideal and all maximal or non-maximal

subspaces of vector space V are < 0 >-prime submodules in V.

Corollary 1.2.10. If M is a finitely generated module, then every proper
submodule of M is contained in a prime submodule.
Proof. Let N be a proper submodule of M and let A be the set of all

submodules of M containing N. A is non-empty, because N € A. By Zorn’s
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Lemma, it can easily be proved that there exists a maximal element L in A.

Thus L is a maximal submodule of M and by Proposition 1.2.8 L is a prime

submodule of M containing N. O

Definition 1.2.11. An R-module M is called a multiplication module pro-

vided that for every submodule N of M there exists an ideal I of R such

that N = IM.

Theorem 1.2.12. Let M be a non-zero R-module, where R #0. If M is a
multiplication module, then M has at least one prime submodule.
Proof. Let M # 0 and 0 # m € M. Then I = {r € R| rm = 0}
is a proper ideal of R and hence I C P for some maximal ideal P of
R. If M = PM then since Rm = AM, for some ideal A of R, we have
Rm = AM = PAM = PRm = Pm. Therefore (1 —r)m = 0 for some r € P
and hence (1-r) € I. Since ] C Pthen (1-7) € Pandsol € P, a
contradication. Thus M # PM. Since (PM : M) = P is a maximal ideal,
PM is a prime submodule of M by Corollary 1.2.5.

For any R-module M, let spec(M) denotes the colleciton of all prime
submodules of M. Now let H be any R-module, for any prime ideal pof R

we define

specy(H) = {L € spec(H)| (L : H) = p}.

Lemma 1.2.13. Let p be a prime ideal of R and let M be an R-module.
Let N be any submodule of M and let K € spec,(M), then KN N = N or

K N N € spec,(N).




Proof. Let KN N # N for any r € p we have rN C rM C K, also
rN C N thenrN C KN N. Hence p C (KN N : N). Now suppose that
r€(KNN:N)thenrNCKNNC K. Since NZ K and K is a prime
submodule of M then r € p. Thus (KN N : N) =p. Let rz € KN N, where
rc Randz € N,hencerr € K andsor € por z € K. It follows that r € p

orz € KNN. Thus KN N € spec,(N).

3. Zariski Topology on spec(M)

Recall that spec(R) denotes the collection of all prime ideals of R. For

an ideal I of R we define
V(I) = {P € spec(R) : I C P}.

It can easily be checked that V ({0}) = spec(R) also

V(R)=10

VYUV (J) = V(1J)

,\QAV(IA) = V(EA 1)
where I and J and I, (X € A) are ideals of R. Thus the V(I) are the closed
sets for a topology on spec(R), called the Zariski topology.

Now we extend this notion to modules. For any submodule N of an R-
module M we define V(N) to be set of all prime submodules of M containing
N. Of course V(M) is just the empty set and V(0) is spec(M).

Let I be an ideal of a ring R. Define the variety of I denoted by VZ(I) = |

V(I). The collection ¢(R) = {VE(I)| IQ R} of all varieties of ideals I of R

satisfies the axioms for closed sets in a topological space.




Now let M be an R-module for any submodule N of M we consider
two different types of varieties denoted, by V*(N) and V(N) respectively as
follows:

V*(N) = {P € spec(M)| P D N}.
Then
(i) V*(0) = spec(M) and V*(M) = @
(ii) ’_QA V*(N) = V*(’%i N;) for any index set A
(iii) V*(N)UV*(L) CV*(N N L), where N,L,N; < M since
NNLCN=V*(NNnL)DV*N)

= V' (N)uV*(L) CV*(NnL).
NNLCL=V*NNL)> V(L)

We denote the set {V*(N)| N < M} by ¢*(M).
Next, we define
V(N) = {P € spec(M)| (P: M) D (N : M)},

which are the closed sets. Then
a) V(0) = spec(M) and V(M) =9
b) iQAV(N,-) = V(%i(N,- : M)M)
¢) V(N)UV(L) =V(NNL) where N,L,N < M.
Proof. (a) The proof is trivial.
(b)

Pe(\V(N) < (P:M)2(N;:M) VieA

i€A
< (P:M)MD(N,:M)M Vi€l

since ((N : M)M : M) = (N : M) for every submodule N of M because

if r € (N:M)
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