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Abstract

One of the aims of this dissertation is the consideration of the boundedness
problem of infinite matrix operators on some sequence spaces such as the Euler
weighted sequence space eθw,p, the p−bounded variation sequence space bvp, the
sequential weak ℓp space and the block weighted sequence space ℓp(w,F ). Our
investigations consider some non-negative infinite matrices such as Nörlund ma-
trices, generalized Hausdorff matrices, Weighted mean matrices and more gener-
ally the lower triangular matrices as operators on the mentioned spaces and present
lower bound and upper bound for them. Our results generalize some work of Ben-
nett, Rhoades, Chen, Jameson and Foroutannia and also my earlier results joint
with Lashkaripour.

Another purpose of this dissertation is to introduce the concept of E−frames
in a separable Hilbert space H, where E is an invertible infinite matrix mapping
on the Hilbert space direct sum

∞
⊕
n=1

H. We investigate and study some proper-
ties of E−frames and characterize all E−frames in H. Further more, we char-
acterize all dual E−frames associated with a given E−frame. A similar charac-
terization is also established for E−orthonormal bases, E−Reisz bases and dual
E−Riesz bases. In continue we deal with several special types of E−frames such
as∆−frames and Euler frames for H which are related to the spaces bvp and the
Euler weighted sequence space eθw,p, respectively. Our results generalize the con-
cept of frames because the ordinary frames are the special case of E−frames in
which the matrix E be replaced by the identity matrix operator I on

∞
⊕
n=1

H.

Keywords: Sequence space, Bounded matrix, Lower bound; Norm; Frame.



i
i

i
i

i
i

i
i

Introduction

The boundedness problem of linear operators on normed spaces have been con-
sidered from the distant past. The results about norm and upper bound of matrix
operators on sequence spaces went right back to the original theorems of Hardy,
Copson and Hilbert which are summarized together in the famous book of Hardy,
Littlewood and Polya [25]. But the lower bound problem for matrix operators on
sequence spaces have been started by Lyons [37] in 1982 via computing the lower
bound of Cesàro matrix on the sequence space ℓ2. The technique used by Lyons
was very complicated and did not generalize to other matrices.

In 1986, Bennett [3] began working on this problem and came up with an
explicit formula for the solution for lower bound of any matrix with non-negative
entries which is a bounded operator on an ℓp space for 1 ≤ p ≤ ∞. Unfortunately,
using this formula to compute the lower bound for specific classes of matrices is
often very difficult. In spite of this fact, Bennett in [4] found the lower bound
for the calss of the Hausdorff matrices, that are bounded operators on ℓp for some
1 ≤ p < ∞. He also computed the value of lower bound for quasi-Hasudorff
matrices. Moreover in [5], he obtained a Hardy type formula for the lower bound
of Hausdorff matrices on the sequence space ℓp(0 < p < 1).

In 1996, Johnson, Mohapatra and Rass in [29] obtained an upper estimate and
a lower estimate for the norm of Nörlund matrices on space ℓp where 1 ≤ p <∞.

In 1999, Jameson [27] considerd the analogous problem in the continuous
case on the Lorentz sequence space d(w, 1). Afterwards, Jameson, Lashkaripour



i
i

i
i

i
i

i
i

ii Bounded Matrices and Frame Theory

[28] and Foroutannia [31] generalized this results to the weighted sequence space
ℓp(w), the Lorentz sequence space d(w, p) and the block weighted sequence space
ℓp(w,F ) where 1 ≤ p <∞.

Between years 2008 to 2011, Chen and Wang [10, 11, 12, 13] generalized
some results of Bennett about the lower bound of matrices to the sequence space
ℓp where 0 < p < 1 or −∞ < p < 0. For example, they obtained a general
lower estimate and upper estimate for the exact velue of the lower bound of lower
triangular non-negative matrices, and obtained a Hardy type formula for the lower
bound of generalized Hausdorff matrices.

In 2011, Lashkaripour and Talebi [32, 33, 34, 35] generalized this results to
the weighted sequence space ℓp(w), block weighted sequence space ℓp(w,F ) and
the Euler weighted sequence space eθw,p where 0 < p < 1 or −∞ < p < 0.

As a part of this thesis, these results are extended to the matrix operators on
the p−bounded variation sequence space bvp and the sequential weak ℓp where
0 < p < 1, and on the Euler weighted sequence space eθw,p where 1 ≤ p < ∞
and also on the block weighted sequence space ℓp(w,F ) where 0 < p < 1 or
−∞ < p < 0. Another purpose of this thesis is to correlate the concept of frame
in a separable Hilbert spaceH to the concept of boundedness of matrix operators
on two sequence space (bvp, ||.||bvp) and (eθw,p, ||.||eθw,p

).

A frame inH, that historically was introduced by Duffin and Schaeffer [18] in
1952, is a countable family {fk} inH for which there exist positive real numbers
A and B such that

A∥f∥2 ≤ ∥{⟨f, fk⟩}∞k=1∥
2
ℓ2

≤ B∥f∥2, ∀f ∈ H. (1)

Frames have very important and interesting properties which make them very use-
ful in the characterization of function spaces, signal processing and many other
fields such as image processing, data compressing, sampling theory and so on.
The work of Duffin and Schaeffer was not continued until 1986 when Daubechies,
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Grossmann andMeyer [16] applied the theory of frame towavelet andGabor trans-
form. Theory of frames for Hilbert spaces have been developed deeply. Many
people have done momentous works in this field such as Han, Larson, Young,
Casazza, Christensen and Cao (see [7, 9, 14, 23, 43]).

In 1990, Grochenig, Aldroubi, Sung and Tang began to study the theory of
frames for Banach spaces. They introduced two kinds of notions of frames for
Banach spaces: Banach frames and p−frames (1 < p <∞). A sequence {gk} in
the dual space X∗ of a Banach space X is a p−frame in X if there exist positive
real numbers A and B such that

A∥x∥ ≤ ∥{⟨x, gk⟩}∞k=1∥ℓp ≤ B∥x∥, ∀x ∈ X. (2)

A Banach frame with respect to ℓp for X is a p−frame in X with a reconstruction
operator S (see[1, 21]). Subsequently, Casazza, Christensen and Stoeva in [8]
generalized the concept of p−frames and introduce Xd−frames, where Xd is a
BK−space. In [36], Li and Cao introduced the notion ofXd frames andXd Riesz
bases for Banach spaces.

Keeping in mind the inequalities (1) and (2), working on the boundedness of
matrices on the two sequence spaces (bvp, ||.||bvp) and (eθw,p, ||.||eθw,p

), we became
interested in studying the sequences {fk} in a Hilbert space H, for which there
exist positive real numbers A and B such that

A ∥f∥ ≤ ∥{⟨f, fk⟩}∞k=1∥bv2 ≤ B ∥f∥ , ∀f ∈ H (3)

or

A ∥f∥ ≤ ∥{⟨f, fk⟩}∞k=1∥eθ2 ≤ B ∥f∥ , ∀f ∈ H. (4)

For some reasons we named the first ones ∆−frames and the second ones Euler
frames. This two types of frames motivated us to introduce and study a more gen-
eral concept of frames namely E−frames for a separable Hilbert space H, where
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E is an invertible infinite matrix mapping on the Hilbert space direct sum
∞
⊕
n=1

H.
This is the second purpose of this thesis.

This Thesis is organized as follows. Chapter 1, contains some preliminaries
which are essential to our discussions in the subsequent chapters. Some elemen-
tary concept of functional analysis such as boundedness, linearity of operators on
normed spaces and certain sequence spaces and some preliminaries in frame the-
ory such as frames, Riesz bases, orthonormal bases in Hilbert spaces are another
concepts that are listed in chapter 1.

In chapter 2, we consider theHausdorffmatrices as operators from theweighted
sequence space ℓp(w) into the Euler weighted sequence space eθw,p(1 < p < ∞)

where 0 < θ < 1 and obtain an upper estimate for their operator norm. Then
we apply our results to some famous classes of Hausdorff matrices such as Cesàro
matrices, Hölder matrices, Euler matrices and Gamma matrices. Our result gen-
eralizes Theorem 2.2 of [30]. Also we establish a similar results for the Nörlund
matrix as an operator from ℓp(w) into the space eθw,p.

In chapter 3, we consider the generaized Hasdorff matrix operators as matrix
mappings from the weighted sequence space ℓp(w) into either the sequential weak
ℓp space or the block weighted sequence space ℓp(w,F ), and obtain a lower esti-
mate for their lower bound. A similar result is also established for their transpose.
As a consequence, we apply our results to some famous classes of generaized
Hausdorff matrices such as generaized Cesàro matrices, generaized Hölder ma-
trices and generaized Gamma matrices. Our results generalize some results in
[13] and [32]. Also in this chapter we consider the transpose of a lower triangu-
lar matrix with non-negative entries and increasing rows as a matrix selfmap of
the p−bounded variation sequence space bvp and establish a lower estimate for its
lower bound. Moreover, we consider the transpose of an arbitrary lower triangular
matrix with non-negative entries as a matrix mapping from either the weighted se-
quence space ℓp(w) into the sequential weak ℓp space or from the Euler weighted
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sequence space ℓp(w, I) into the block weighted sequence space ℓp(w,F ) and dis-
cuss about its lower bound. Our results generalize some work in [12], [32], [33]
and [35].

In chapter 4, we introduce the concepts of E−frames, E−Riesz bases and E−
orthonormal bases for an arbitrary separable Hilbert space H, where E is an in-
vertible infinite matrix mapping on the Hilbert space

∞
⊕
n=1

H. We study some of
their properties and characterize all of them starting with an arbitrary orthonormal
basis in H. Further more, we characterize all dual E−frames associated with a
given E−frame. Our results generalize the concept of frames because the ordi-
nary frames are a special case of E−frames in which the matrix E is replaced by
the identity matrix operator I on

∞
⊕
n=1

H. Also in this section, we study the concept
of∆−frames and Euler frames as special cases of E−frames forH which are re-
lated to the Hilbert spaces bv2 and eθ2, respectively. We compare this two type of
frames with the ordinary frames, and characterize all∆−frames,∆−Riesz bases
and ∆−orthonormal bases starting with an arbitrary orthonormal basis for H. A
similar characterization is also presented for all Euler frames, Euler Riesz bases
and Euler orthonormal bases in H. Moreover, in this section all dual ∆−frames
and all dual Euler frames associated with a given ∆−frame and Euler frame, re-
spectively, are identified. Finally, a similar result is also obtained for a new special
type of E−frames namely Hausdorff frames.
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Chapter 1

Basic consepts and preliminaries results

In this chapter, we introduce some basic concepts which are essential to our
discussions in the subsequent chapters. Some elementary concepts of functional
analysis such as boundedness and linearity of operators on normed spaces and
certain sequence spaces are studied in Section 1.1. Also, some preliminaries in
frame theory such as frames, Riesz bases, orthonormal bases in Hilbert spaces are
other concepts that are introduced in Section 1.2 of this chapter.

1.1 Sequence spaces

Definition 1.1.1. Let X be a normed sequence space, Y be the same as X with
a different norm and A = (an,k)n,k≥0 be an infinite matrix of real or complex
numbers. Then, it is said that A defines a matrix mapping from X into Y, and
is writing as A : X → Y, if for every sequence x = (xk) in X the sequence
Ax = {(Ax)n}, the A-transform of x is in Y where

(Ax)n =

∞∑
k=0

an,kxk, n = 0, 1, ... .

Definition 1.1.2. A non-negative square matrix A is called row stochastic if the
sums of all its rows are 1. A column stochastic matrix is the transpose of a row
stochastic matrix.
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Definition 1.1.3. Let T be a linear operator from a normed space (X, ∥.∥X) into
the normed space (Y, ∥.∥Y ) . If there exists a positive real number κ, such that

∥Tx∥Y ≤ κ∥x∥X ∀x ∈ X, (1.1)

then the operator T is called bounded. Norm of T is the smallest number κ that
satisfies the inequality (1.1) and is denoted by ∥T∥X,Y . Moreover, if there exists
a positive number l, such that

∥Tx∥Y ≥ l∥x∥X ∀x ∈ X, (1.2)

then the operator T is called bounded away from zero. The lower bound of T is
the largest number l satisfies the inequality (1.2) and is denoted by LX,Y (T ).

The ordinary Minkowski’s inequality with two summand can be generalized
to N summand or even a cuntinuum of summand (an integral).

Proposition 1.1.4. (Minkowski’s integral inequality)[38] Fix p ≥ 1 and let (X, T , µ)
and (Y,Ω, λ) be σ-finite measure spaces. Let F be (T ×Ω)−measurable function
on X × Y such that for a.e. y ∈ Y, the function F y(x) := F (x, y) is in Lp(µ)

and that the functionG(y) := ||F y||Lp(µ) is in L1(λ). Then the function Fx(y) :=

F (x, y) ∈ L1(λ) for a.e. x ∈ X and the functionH(x) :=
∫
Y F (x, y)dλ(y) is in

Lp(µ). Moreover,∥∥∥∥∥∥
∫
Y

F (., y) dλ

∥∥∥∥∥∥
Lp(µ)

≤
∫
Y

∥F (., y)∥Lp(µ)dλ.

We have the reverse inequality for 0 < p < 1.

The following theorem is concerning to the integration of functions of two
variables. We use this theorem in Chapter 3.

Theorem 1.1.5. (Fubini’s Theorem)[39] Let (X, T , µ) and (Y,Ω, λ) be σ-finite
measure spaces, and let f be a (T × Ω)−measurable function on X × Y.
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1. If 0 ≤ f ≤ ∞, and if

φ(x) =

∫
Y

fxdλ, ψ(y) =

∫
X

fydµ, (x ∈ X, y ∈ Y ) , (1.3)

then φ is T −measurable, ψ is Ω−measurable, and∫
X

φdµ =

∫
X×Y

fd (µ× λ) =

∫
Y

ψdλ. (1.4)

2. If f is complex, and

φ∗(x) =

∫
Y

|f |xdλ and
∫
X

φ∗dµ <∞,

then f ∈ L1(µ× λ).

3. If f ∈ L1(µ× λ), then fx ∈ L1(λ) for almost all x ∈ X , and fy ∈ L1(µ)

for almost all y ∈ Y ; the functions φ and ψ, defined by (1.3) a.e., are in
L1(µ) and L1(λ), respectively, and (1.4) holds.

A quasi-norm is similar to a norm that satisfies the norm axioms, except that
the triangle inequality is replaced by

∥x+ y∥ ≤ K (∥x∥+ ∥y∥)

for some K > 1. We are now ready to introduce the Lorentz space which arises
naturally in interpolation theory and finds applications in harmonic analysis, prob-
ability theory and functional analysis.

Definition 1.1.6. [22] Let (X,M, µ) be a measure space. The Lorentz space
Lp,q(X,M, µ) is the space of all complex-valued measurable functions f on X
such that the following quasi-norm is finite

|||f |||Lp,q(X,M,µ) =


p1/q

(∫∞
0 tqµ{x : |f(x)| > t}q/p dtt

)1/q
0 < p, q <∞,

sup
t>0

t (µ {x : |f(x)| > t})1/p 0 < p <∞, q = ∞.
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It is conventional to set L∞,∞(X,M, µ) = L∞(X,M, µ), the space of all
essentially bounded complex valued measurable functions onX .

The following interesting and valuable proposition states some inclusion rela-
tion between the Lorentz spaces.

Proposition 1.1.7. [24] If 0 < q1 ≤ q2 ≤ ∞, thenLp,q1(X,M, µ) ⊆ Lp,q2(X,M, µ).
In particular,Lp,q1(X,M, µ) ⊆ Lp,p(X,M, µ) ⊆ Lp,q2(X,M, µ) ⊆ Lp,∞(X,M, µ)

for 0 < q1 ≤ p ≤ q2 ≤ ∞. Moreover, Lp,p(X,M, µ) = Lp(X,M, µ), where
Lp(X,M, µ) denotes the space of all complex valued µ−measurable functions
on X whose modulus to the pth power is integrable.

Definition 1.1.8. The Weak Lp space is the Lorentz space Lp,∞ (X,M, µ).

Proposition 1.1.7 showes that the space Weak Lp contains the usual space
Lp. Also, by the above conventionWeak L∞ = L∞. The spaceWeak Lp arises
naturally in interpolation theory and finds applications in harmonic analysis, prob-
ability theory and functional analysis. The following proposition shows that the
spacesWeak Lp is larger than the usual Lp spaces.

Proposition 1.1.9. [22] Let (X,M, µ) be a finite measure space and 0 < p < q.
Then

Lq (X,M, µ) ⊆ Weak Lq ⊆ Lp (X,M, µ) .

Proposition 1.1.10. [22] Let (X,M, µ) be a measure space. If 1 < p < ∞, then
the space Weak Lp is normable with the norm

||f ||Weak Lp = sup
E

1

(µ (E))
1− 1

p

∫
E

|f | dµ, (1.5)

where the sup is taken over all sets E ∈ M with 0 < µ(E) < ∞. Obviously the
space Weak Lp is metrizable when 0 < p <∞.
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Proposition 1.1.11. [22] The norm defined with (1.5) is equivalent to the quasi-
norm |||f |||Lp,∞(X,M,µ) by the following equivalence relation

|||f |||Lp,∞(X,M,µ) ≤ ||f ||Weak Lp ≤ p

p− 1
|||f |||Lp,∞(X,M,µ).

Consider the set of natural numbers plus zero (the set of all non-negative in-
tegers) equipped with counting measure. Then the sequential weak ℓp space con-
sisting of all complex valued sequences x = {xn} for which

|||x|||Lp,∞(N∪{0},2N∪{0},#) = sup
t>0

t (# {n ∈ N ∪ {0} : |xn| > t})
1
p <∞,

with the norm

||x||weak ℓp = sup
B∈Σ

0<#B<∞

1

(#B)
1− 1

p

∑
n∈B

|xn|.

Here#B just means the number of elements in the set B and ℓp denote the space
of all compelx sequences which are p−absolutely summable.

In the rest of this section we introduce some sequence spaces.

Definition 1.1.12. [2] Let p ∈ R\{0}. The space of sequences of p−bounded
variation is defined as

bvp =

x = (xn) ∈ C : ∥x∥bvp :=

( ∞∑
n=0

|xn − xn−1|p
) 1

p

<∞

 .

where x−1 = 0.
It can be shown that bvp is the space of all real or complex sequences whose
∆−transforms are in the space ℓp,where∆ denotes the matrix∆ = (∆n,k)n,k≥0

defined by

∆n,k =

 (−1)n−k n− 1 ≤ k ≤ n,

0 0 ≤ k < n− 1, k > n.
(1.6)
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Definition 1.1.13. [20] Letw = (wn) be a sequence of non-negative real numbers
and p ∈ R\{0}. The weighted sequence space ℓp(w) is defined as

ℓp(w) =

x = (xn) ∈ C : ∥x∥ℓp(w) :=

( ∞∑
n=0

wn|xn|p
) 1

p

<∞

 .

Lemma 1.1.14. ([34], Lemma 1.1) Let w = (wn) be an increasing non-negative
sequence of real numbers and A be a lower triangular matrix with non-negative
entries. If

sup
n≥0

n∑
k=0

an,k = R, and inf
k≥0

∞∑
n=k

an,k = C > 0,

then

L
ℓp(w),ℓp(w)

(A) ≥ R
p−1
p C1/p. (0 < p < 1)

Definition 1.1.15. [20] Letw = (wn) be a sequence of non-negative real numbers,
p ∈ R\{0} and F be partition of non-negative integers. If F = (Fn), where each
Fn is a finite interval of non-negative integers and

max Fn < min Fn+1 (n = 0, 1, 2, ...),

then the block weighted sequence space is defined as

ℓp(w,F ) =

x = (xn) ∈ C : ∥x∥w,p,F :=

( ∞∑
n=0

wn|< x,Fn >|p
) 1

p

<∞

 ,

where ⟨x, Fn⟩ =
∑

k∈Fn

xk. For a certain In such as In = {n}, I = (In), is a par-

tition of non-negative integers, ℓp(w, I) = ℓp(w), and also ∥x∥w,p,I = ∥x∥ℓp(w).

Definition 1.1.16. [32] Letw = (wn) be a sequence of non-negative real numbers,
p ∈ R\{0} and 0 < θ < 1. The Euler weighted sequence space of order θ is
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defined by

eθw,p =

(xn) ∈ C : ∥x∥eθw,p
:=

[ ∞∑
n=0

wn

∣∣∣∣∣
n∑

k=0

(nk) (1− θ)n−kθkxk

∣∣∣∣∣
p] 1

p

<∞

 .

It can be shown that eθw,p is the spaces of all sequences such that E(θ)-transforms
of them are in the space ℓp(w), where E(θ) is the operator involved in the method
of Euler means of order θ defined by the matrix E(θ) = (en,k(θ))n,k≥0, where

en,k(θ) =


(
n
k

)
(1− θ)n−kθk 0 ≤ k ≤ n

0 k > n,

(1.7)

for all n, k ∈ N. Obviously, E(θθ′) = E(θ)E(θ′) and ∥x∥eθw,p
= ∥E(θ)x∥ℓp(w) .

The following proposition shows the existence of a linear bijection between
the spaces eθw,p and ℓp(w) which is norm preserving.

Proposition 1.1.17. ([32], Theorem 2.2) The sequence space eθw,p is linearly iso-
morphic to the space ℓp(w), i.e. eθw,p

∼= ℓp(w).

Proposition 1.1.18. ([32], Theorem 2.3) Let the weight sequence w = (wn) be
increasing. Then the inclusion eθw,p ⊆ ℓp(w) holds for 0 < p < 1.

Lemma 1.1.19. Let the weight sequence w = (wn) be decreasing. Then the in-
clusion ℓp(w) ⊆ eθw,p strictly holds for 1 ≤ p <∞.

Proof. Let x = {xk} ∈ ℓp(w) and y = {yk(θ)} be the E(θ)-transform of the
sequence x, i.e.

yk(θ) =

k∑
j=0

(
k
j

)
(1− θ)k−jθjxj .


