دانشگاه علم قاصعت لیران

دانشکده مهندسی عمران

طاهره حيدرى

استاد راهنما : دکتر محمد حسن بازیار

زمستان ۱۳۸۲

تقدیر و تشکر:

در ابتدا از استاد ارجمندم جناب آقای دکتر بازیار که امر هدایت و راهنمایی این پایان نامه را بر عهده داشتند و با عنایت و توجه خاص و همیشگی خود مرا در انجام این پروژه یاری نموده اند و از آقایان دکتر نورزاد، دکتر صالح زاده و دکتر شاه نظری که لطف نموده و داوری این پروژه را بر عهده گرفتند نهایت امتنان و تشکر را دارم.

و همچنین از خانم مهندس سالمی که در تهیه این پایان نامه با راهنمایی و دلسوزی خود مرا در به ثمر رساندن این امر یاری نمودند متشکرم.

طاهره حیدری اسفند۱۳۸۲ تقدیم به پدر و مادرم

فهرست مطالب

عنوان
فصل اول: مقدمه و کلیات
۱–۱– مقدمه
۱–۲– هدف پروژه
۳-۱- مراحل انجام تحقیق
۴-۱- معرفی فصلهای مختلف۴
فصل دوم: روش های آنالیز دینامیکی سدهای خاکی
۶۶-۱–۲– مقدمه
۲-۲- نمونههایی از خرابی سدهای خاکی در اثر زلزله۹
۹۱۹۷۱ ، San Fernando سد ۱۹۲۱ – سد ۱۹۷۱
۲-۲-۲ سد Sheffield، زلزله ۱۹۲۵ Santa Barbara، زلزله
Hebgen سد Hebgen، زلزله ۱۹۵۹ West Yellowston ۲-۲-۲
۲-۳- عوامل مؤثر در طراحی لرزهای سدهای خاکی
۲-۴- روشهای بررسی پایداری سد خاکی در برابر زلزله۱۶
۲-۴-۲ آنالیز شبه استاتیکی
۲-۴-۲ برآورد تغییر شکلهای دائمی۲
۲-۴-۲-۱ آنالیز نیومارک۲۹
Seed و Seed و Seed۲۹۲۹ و Seed
۲–۴–۳ آنالیز دینامیکی

۲-۴-۲- روش معادل خطی۳۲
۲-۴-۲- روش غیرخطی ساده شده۳۳
۲-۴-۳-۳ روش هیستریک گالرکین۳۴
۲-۴-۳-۴ روش تیر برشی غیرالاستیک لایهای (LISB)۳۵
۲-۴-۳-۵- آنالیز تقریبی تنش مؤثر غیرخطی دو بعدی۳۶
۲-۴-۳-۶-روش پلاستیک بر مبنای تکنیکهای اجزاء محدود و تفاضلهای محدود۳۷
فصل سوم: بررسی تاثیر شکل سه بعدی دره در پاسخ دینامیکی سدهای خاکی
۳۵-۱- عوامل مؤثر در تحلیل پاسخ دینامیکی سدهای خاکی و سنگریزهای۳۸
۳۹-۲- تأثیر شکل سه بعدی دره
۳۹-۲-۲ - تأثیر شکل سه بعدی دره در تحریک یکنواخت پی سد۳۹
۳-۲-۲ تاثیر شکل سه بعدی دره در تحریک غیر همسان امواج لرزهای
۳–۲–۲–۱–پاسخ سه بعدی سدها به امواج زاویهدار SH۴۸
– اثر زاویه برخورد
- تأثیر نسبت سرعت موج برشی Vcanyon/Vdam
– اثر باریکی درہ۵۵
فصل چهارم: معرفی نرمافزار FLAC و بررسی صحت عملکرد آن
۵۶-۱-۴- مقدمه
۲-۴– آشنایی با نرمافزار <i>FLAC</i>
۴-۲-۴ تفاضل محدود۵۷
Explicit -۲-۲-۴، روش Explicit یست
۴-۲-۴ آنالیز لاگرانژی

۴-۲-۴ آنالیز پلاستیک
۴–۳- روابط آنالیز عددی۴
۴–۳–۱ المان بندی
۴-۳-۲-محاسبه نرخ کرنش
۴–۳–۳-محاسبه تنش
۴-۳-۴-محاسبه جرم گرهای۴
۴-۳-۵-محاسبه نیروی نامتعادل
۴-۳-۶-محاسبه سرعت و جابهجایی۴
۴–۳–۷-محاسبه هندسه اصلاح شده
۴-۴- ویژگیهای نرمافزار FLAC برای تحلیل دینامیکی۴۸
۴-۴-۱ مشخصات روش معادل خطی و غیرخطی۴
- مشخصات روش معادل خطی۹
-مشخصات روش غیرخطی کامل۷۰
۴-۴-۲-روابط دینامیکی در نرمافزار FLAC
۴-۴-۳ ویژگیهای مرزها در تحلیل دینامیکی۷۳
۴-۴-۳-۱- مرزهای ویسکوز
۲-۳-۴-۴-مرزهای Free - Field
۴-۴-میراکننده مکانیکی
۴-۴-۴-۱-میرایی رالی
۴-۴-۴-۲ میرایی محلی
۴-۴-۵- انتقال موج

۸۱	۴-۵- بررسی صحت عملکرد برنامه۴
۸۱	۴–۵–۱– مدل ساخت مرحلهای
٨۴	۴–۵–۲–آنالیز دینامیکی و مقایسه آن با نرمافزار SHAKE91
	فصل پنجم: تحلیل استاتیکی و دینامیکی سد البرز در حالت دوبعدی و سه بعدی
٨٩	۵-۱-معرفی سد مخزنی البرز
٨٩	۵-۱-۱-موقعیت جغرافیایی محل اجرای طرح
٨٩	۵-۱-۲- اهداف طرح
٨٩	۵–۱–۳–هندسه سد
٨٩	۵–۱–۴– مشخصات زمین شناسی
۹۳	۵-۱-۵-لرزه خیزی و برآورد خطر زمین لرزه در ساختگاه سد
۹۵	۵-۲- آنالیز دو بعدی سد البرز
۹۵	۵-۲-۱ آنالیز تنش-کرنش استاتیکی
۹۵	۵–۲–۱–۱–مدلسازی
٩٧	۵-۲-۱-۲- نتایج تحلیل استاتیکی
۱۰۰	۵-۲-۱-۳- بررسی تاثیر میرایی بر آنالیز استاتیکی
۱۰۱	۵–۲–۲–آنالیز دینامیکی
۱۰۱	۵-۲-۲-۱ -مدلسازی
۱۰۱	۵–۲–۲–۲-انتخاب شتاب نگاشت
1.4	۵-۲-۲-۳-مدل رفتاری مصالح و خصوصیات دینامیکی آنها
1.4	۲-۲-۲-۴ نتایج تحلیل با استفاده از معادله موج raker
111	۵-۲-۲-۵- نتایج تحلیل با استفاده از شتاب نگاشت زلزله منجیل

۵-۲-۲-۹- مطالعه پارامتریک اثر میرایی	
۵-۲-۲-۷- مطالعه پارامتریک اثر سرعت موج برشی مصالح بر پاسخ سد	
۳۰ - آنالیز سه بعدی سد البرز	۵-
۵–۳–۱-آنالیز سه بعدی سد با طول تاج ۸۴۰ متر(حالت ۱)	
۵–۳–۱–۱–آنالیز تنش– کرنش استاتیکی	
۲-۵-۲-۱ آنالیز دینامیکی با استفاده از معادله موج raker	
۵–۳–۱–۳– آنالیز دینامیکی با استفاده از شتاب نگاشت منجیل	
۵-۳-۲-آنالیز سه بعدی سد با طول تاج ۶۸۰ متر(حالت ۲)	
۵–۳–۲–۱-آنالیز تنش- کرنش استاتیکی	
۲-۳-۵ -۲-۲- آنالیز دینامیکی با استفاده از معادله موج raker	
۵–۳–۲–۳– آنالیز دینامیکی با استفاده از شتاب نگاشت منجیل	
۵-۳-۳-آنالیز سه بعدی سد با طول تاج ۳۴۰ متر(حالت ۳)	
۵-۳-۳-۱-آنالیز تنش- کرنش استاتیکی	
۵-۳-۳-۲ آنالیز دینامیکی با استفاده از معادله موج raker	
۵–۳–۳–۳– آنالیز دینامیکی با استفاده از شتاب نگاشت منجیل	
۵-۳-۴-آنالیز سه بعدی سد با طول تاج ۱۷۰ متر(حالت ۴)۱۵۶	
۵–۳–۴–۱-آنالیز تنش- کرنش استاتیکی۱۵۷	
۲-۴-۳-۵ آنالیز دینامیکی با استفاده از معادله موج raker	
۵–۳–۴–۳– آنالیز دینامیکی با استفاده از شتاب نگاشت منجیل	
۴۰ تحلیل و بررسی نتایج۴۰	۵-
۵-۴-۱ - مقایسه نتایج آنالیزهای استاتیکی	

١۶٨	۵-۴-۲- مقایسه نتایج آنالیزهای دینامیکی دو بعدی و سه بعدی
١۶٨	۵-۴-۲-۱- دره های عریض و کم عمق
۱۷۳	۵-۴-۲-۲- دره های تنگ
۱۷۸	فصل ششم: جمع بندی و نتیجه گیری
۱۸۱	منابع و مواخذ

فهرست اشكال

عنوان
فصل دوم:
شکل۲–۱– نمائی از سد سن فرناندو پس از لغزش بالادست سد در زلزله ۱۹۷۱
شکل۲–۲– نمائی از سد Sheffield، پس از خرابی در زلزله ۱۹۲۵ Santa Barbara
شکل۲-۳- نمائی از دریاچه سد Hebgen، پس از خرابی در زلزله ۱۹۵۹ West Yellowston ۱۳
شکل ۲-۴- روش محاسبه پایداری شیبها در برابر زلزله (Terzaghi, 1950)
شکل ۲–۵– آنالیز پایداری لرزهای خاکریز سد Sheffield با استفاده از روش شبه استاتیکی
شکل ۲–۶- آنالیز پایداری سد San Fernando با روش شبه استاتیکی
شکل ۲–۷- نتایج آنالیز پایداری خاکریز سد San Fernando
شکل ۲–۸- شکست سد انباشت رسوبات در اثر زلزله Oshima, 1978 در ژاپن
شکل ۲–۹- نیروهای موثر بر بلوک لغزنده ۲۲
شکل ۲-۱۰ - انتگرالگیری از تاریخچه شتاب نسبت به زمان برای تعیین مقادیر سرعت و جابهجائی
۲۴ (M.H. Baziar, 1991)
شکل ۲–۱۱– تعیین شتاب مؤثر برای پتانسیل لغزش توده۲۵
شکل ۲–۱۲– تغییر شکل دائمی برای زلزلههائی با بزرگی متفاوت (Newmark, 1965)
شکل۲–۱۳ تغییر مکانهای محاسبه شده برای خاکریز سدهایی که در معرض زلزلهای به بزرگی ۶/۵ قرار
گرفتهاند و در اثر زلزله کاهش مقاومت پیدا نمی کنند ۲۷
شکل ۲–۱۴ تغییر مکانهای محاسبه شده برای خاکریز سدهایی که در معرض زلزلهای به بزرگی ۶/۵ قرار
گرفتهاند و در اثر زلزله کاهش مقاومت پیدا نمی کنند ۲۸

عن

شکل ۲–۱۵- تغییر مکانهای محاسبه شده برای خاکریز سدهائی که در اثر زلزله کاهش مقاومت پیدا
نمی کنند (Seed)
شکل ۲-۱۶- متوسط تغییرات «حداکثر شتاب متوسط» در اعماق مختلف جرم لغزنده
شکل ۲-۱۷- تغییرات تغییر مکان نرمالیزه شد متوسط برحسب شتاب جاری شدن
فصل سوم:

شکل ۳-۱- تاثیر هندسه دره بر پریود طبیعی غالب۴۰
شکل ۳-۲-پاسخ ماندگار به تحریک هارمونیک پی: (a) سد در دره نیمه استوانهای به روش تحلیل سه بعدی
و تحلیل تیر برشی مسطح (b) تاثیر شکل دره بر بزرگنمایی میان تاج۴۵
شکل ۳–۳- بزرگنمایی تاج نسبت به کف برای سد Ririe در زلزله Mt. Borah سال 1983، پاسخ تئوری
(منحنی نقطه چین) بوسیله مدل دو بعدی کرنش مسطح محاسبه شده است
شکل ۳–۴– سد در دره مستطیل در معرض تحریک مایل (a) پرسپکتیو هندسه سد (b) مقطع سد (c)مقطع
طولی به همراه امواج SH عبوری و منکسر شده (Dakulas 1990)۴۹
شکل ۳-۵- بزرگنمایی میان تاج بر حسب فرکانس بدون بعد برای سدی در دره مستطیلی تحت اثر امواج
SH مایل با زاویه: (a) °۰۰ °۵۰ ، ۴۵°، ۳۰° (b) °۰۰ ، ۴۵°، ۴۵°، ۶۹ و ° ۲۵
شکل ۳-۶- تغییرات ضریب بزر گنمائی در طول تاج سد در دره مستطیلی تحت اثر امواج SH مایل،
برای ۴ نسبت طول موج به طول دره L (Gazetas & Dakolus, 1991)
شکل ۳-۷- بزرگنمایی تاج سد برحسب فرکانس بدون بعد سه سد با نسبت سرعت موج S
۵۵ کره مستطیلی تحت اثر امواج SH قائم ۵۵ (دره صلب) در دره مستطیلی تحت اثر امواج V_{dam} = ۳ .۱۰ . ∞
فصل چهارم:
شکل ۴–۱- مراحل انجام محاسبات در FLAC
شکل ۴-۲- تقسیم بندی یک المان مکعبی

شکل۴-۳- منحنی مدول برشی و نسبت میرایی نسبت به کرنش مسطح (Seed & Idriss, 1970)

شکل ۴–۴– کاهش مدول برشی و میرایی نسبت به کرنش سیکلی برای مدل الاستوپلاستیک۷۱
شکل ۴–۵-آنالیز دینامیکی سازههای سطحی با در نظر گرفتن مرزهای Freefield
شکل ۴-۶- تغییرات نسبت میرایی بحرانی نرمالایز شده بر حسب فرکانس زاویهای
شکل ۴–۷- موج اعمال شده در کف مدل
شکل ۴–۸- مدل یک بعدی شامل دو نوع مصالح ۸۵
شکل ۴–۹- تاریخچه شتاب افقی در بالای مدل ۸۷
شکل ۴–۱۰- کرنش برشی در دو مدل FLAC و SHAKE91 ۸۸
شکل ۴–۱۱– تنش برشی در دو مدل FLAC و SHAKE91 ۸۸
صل پنجم:
شکل۵-۱- موقعیت جغرافیایی سد البرز۹۰
شکل۵-۲- مقطع تیپ سد البرز
شکل۵-۳- مقطع شماتیک زمین شناسی در امتداد محور سد۹۲
شکل ۵–۴– المان بندی سد مخزنی البرز در نرم افزار FLAC 2D
شکل ۵–۵- کانتور تغییر مکان افقی در حالت استاتیکی(m) ۹۸
شکل ۵-۶- کانتور تغییرمکان قائم در حالت استاتیکی(m)۹۸
شکل ۵-۷- کانتور تنشهای قائم در حالت استاتیکی(N/m²)
شکل ۵–۸- کانتور تنشهای افقی در حالت استاتیکی(N/m ²)
شکل ۵-۹- کانتور تنشهای برشی در حالت استاتیکی(N/m ²)
شکل ۵–۱۰-موج ریکر با شتاب حداکثر ۲۵g.۰۰
شکل ۵–۱۱– شتاب نگاشت و طیف دامنه فوریه زلزله منجیل مقیاس شده به g ۰/۳۵
شکل ۵–۱۲– کانتور تغییر شکلهای افقی پس از اعمال بار دینامیکی(m)
شکل ۵–۱۳– کانتور تغییر شکلهای قائم پس از اعمال بار دینامیکی(m)

شکل ۵–۱۴– تاریخچه تغییر مکان افقی در میانه تاج(m)
شکل ۵–۱۵– تاریخچه تغییر مکان قائم در میانه تاج(m)
شکل ۵-۱۶- تاریخچه تنش قائم در محل اتصال هسته رسی و پی (N/m ²)
شکل ۵-۱۷- کانتور تنشهای برشی پس از اعمال زلزله (N/m²)
شکل ۵-۱۸- تاریخچه شتاب در میانه تاج سد و طیف دامنه فوریه آن
شکل ۵-۱۹- تاریخچه شتاب در محل اتصال هسته رسی و پی
شکل ۵-۲۰- تغییرات شتاب حداکثر نسبت به ارتفاع در محور سد
شکل ۵-۲۱- کانتور تغییر شکلهای افقی پس از اعمال شتاب نگاشت منجیل
شکل ۵-۲۲- کانتور تغییر شکلهای قائم پس از اعمال شتاب نگاشت منجیل
شکل ۵–۲۳– تاریخچه تغییر مکان افقی در میانه تاج(m)
شکل ۵-۲۴- تاریخچه تغییر مکان قائم در میانه تاج(m)
شکل ۵-۲۵- کانتورهای تنش برشی پس از اعمال زلزله منجیل(N/m ²)
شکل ۵-۲۶- تاریخچه شتاب بر روی بستر سنگی
شکل۵-۲۷- تاریخچه شتاب بر روی آبرفت (در محل تماس هسته رسی به پی)
شکل ۵-۲۸- تاریخچه شتاب بر روی تاج سد و طیف دامنه فوریه آن
شکل۵-۲۹- تغییرات شتاب حداکثر نسبت به ارتفاع در محور سد تحت اثر زلزله منجیل
شکل۵-۳۰- تغییرات شتاب حداکثر در تاج سد نسبت به ضریب میرایی
شکل۵–۳۱- تغییرات شتاب حداکثر با ارتفاع در سه حالت سرعت موج برشی هسته
شکل۵-۳۲- تغییرات ضریب بزرگنمایی تاج سد برحسب سرعت موج برشی هسته
شکل ۵–۳۳– هندسه شماتیک دره سد در چهار حالت
شکل ۵–۳۴– شکل سه بعدی پی و تکیه گاهها
شکل ۵–۳۵- تنشهای اولیه در مقطع طولی دره

شکل ۵-۳۶- مدل سه بعدی سد البرز به همراه مقاطع طولی و عرضی الف) مدل سه بعدی سد البرز
ب) مقطع طولی از محور سد ج) مقطع عرضی
شکل۵-۳۷-کانتور نشست قائم در مقطع ماکزیمم و طولی سد البرز (m)
شکل۵-۳۸-کانتور تغییرمکان افقی در مقطع ماکزیمم سد البرز (m)
شکل۵-۳۹- کانتورهای تنش قائم در مقطع ماکزیمم سد البرز (N/m ²)
شکل۵-۴۰- کانتورهای تنش افقی در مقطع ماکزیمم سد البرز (N/m ²)
شکل۵-۴۱- کانتورهای تنش برشی در مقطع ماکزیمم سد البرز در حالت سه بعدی(N/m ²)
شکل۵-۴۲- شرلیط مرزی مدل در حالت بارگذاری دینامیکی
شکل۵-۴۳-کانتورهای تغییرشکل افقی در مقطع ماکزیمم و بدنه پس از اعمال موج ریکر با
شتاب ۳۵ g/۳۵ g
شکل ۵-۴۴-کانتورهای تغییرشکل در امتداد تاج سد (محور y) در مقطع طولی پس از اعمال موج ریکر با
شتاب g ۲۵٪ .
شکل ۵-۴۵-کانتورهای تغییرشکل قائم در مقطع ماکزیمم سد پس از اعمال موج ریکر با
شتاب ۰/۳۵ g م۳/۰
شکل ۵-۴۶-کانتورهای تنش برشی در مقطع ماکزیمم سد پس از اعمال موج ریکر با شتاب g ۰/۳۵ ۱۲۹۰۰۰
شکل ۵-۴۷-تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (موج ریکرg ۰/۳۵)
شکل۵-۴۸-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (موج ریکرg ۰/۳۵)
شکل ۵-۴۹- تاریخچه شتاب بر روی تاج سد به همراه موج ریکر و طیف دامنه فوریه آن
شکل ۵-۵۰- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (طیف منجیلg ۰/۳۵) ۱۳۳۰۰۰۰
شکل ۵–۵۱-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (طیف منجیلg ۳۵/۰)
شکل ۵–۵۲- تاریخچه شتاب بر روی تاج سد و طیف دامنه فوریه آن (زلزله منجیل ۰/۳۵g)
شکل۵-۵۳- شکل سه بعدی پی و تکیه گاهها

شکل ۵–۵۴– تنشهای اولیه در پی و تکیه گاه۱۳۵.
شکل ۵–۵۵– هندسه سه بعدی سد با طول تاج ۶۸۰ متر
شکل ۵-۵۶- کانتورهای تغییرمکان قائم در مقطع ماکزیمم و طولی سد(m)
شکل ۵–۵۷– کانتورهای تغییرمکان افقی در مقطع ماکزیمم سد(m)
شکل۵-۵۸- کانتورهای تنش قائم در مقطع ماکزیمم سد (N/m ²)
شکل۵–۵۹– کانتورهای تنش افقی در مقطع ماکزیمم سد (N/m ²)
شکل ۵-۶۰-کانتورهای تنش برشی در مقطع ماکزیمم سد (N/m ²)
شکل۵-۶۱-کانتورهای تغییرشکل افقی در بدنه سد و مقطع ماکزیمم پس از اعمال موج ریکر با
شتابg ۰/۳۵ g
شکل ۵-۶۲-کانتورهای تغییرشکل افقی در جهت y در مقطع طولی سد پس از اعمال موج ریکر با
شتابg ۰/۳۵ g
شکل ۵-۶۳-کانتورهای تغییرشکل قائم در مقطع ماکزیمم سد پس از اعمال موج ریکر با شتابg ۱۴۰. ۱۴۰
شکل ۵-۶۴-کانتورهای تنش برشی در مقطع ماکزیمم سد پس از اعمال موج ریکر با شتابg ۱۴۰۰۰۰۰۰
شکل ۵–۶۵- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (موج ریکر g ۷۵/۰)۱۴۱
شکل ۵-۶۶-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (موج ریکرg ۰/۳۵)۱۴۱
شکل ۵-۶۷- تاریخچه شتاب بر روی تاج سد به همراه موج ریکر و طیف دامنه فوریه آن۱۴۲
شکل ۵–۶۸- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (طیف منجیل g ۰/۳۵ g)۱۴۳
شکل ۵–۶۹-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (طیف منجیل g ۰/۳۵)۱۴۳
شکل ۵-۷۰-تاریخچه شتاب بر روی تاج سد (طیف منجیل ۶ ۰/۳۵)
شکل ۵–۷۱- شکل سه بعدی پی و تکیه گاهها
شکل ۵-۷۲- تنشهای اولیه در پی و تکیه گاه
شکل ۵-۷۳- هندسه سه بعدی سد با طول تاج ۳۴۰ متر

شکل ۵-۷۴- کانتورهای تغییرمکان قائم در مقطع ماکزیمم و طولی سد(m)
شکل ۵–۷۵- کانتورهای تغییرمکان افقی در مقطع ماکزیمم سد(m)
شکل۵-۷۶- کانتورهای تنش قائم در مقطع ماکزیمم سد (N/m²)
شکل۵–۷۷– کانتورهای تنش افقی در مقطع ماکزیمم سد (N/m²)
شکل ۵–۷۸-کانتورهای تنش برشی در مقطع ماکزیمم سد (N/m ²)
شکل۵-۷۹-کانتورهای تغییرشکل افقی پس از اعمال موج ریکر با شتابg ۰/۳۵ در ۱) بدنه سد (سه بعدی)
۲) مقطع ماکزیمم ۳) مقطعی در نزدیکی تکیه گاه که حداکثر تعییر مکان افقی در آن اتفاق می افتد
149
شکل ۵-۸۰-کانتورهای تغییرشکل افقی در جهت y در مقطع طولی سد پس از اعمال موج ریکر با
شتابg ۰/۳۵ شتابs
شکل۵–۸۱-کانتورهای تغییرشکل قائم در مقطع ماکزیمم سد پس از اعمال موج ریکر با شتابg ۱۵۰۰. ۱۵۰
شکل ۵–۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتابg ۳۵/۰در مقطع ماکزیمم سد و سطح
شکل ۵–۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتابg ۳۵/۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتابg ۳۵/۰۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر شکل ۵-۸۳- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (موج ریکر g ۰/۳۵)۱۵۲
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتابg ۳۵/۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر ۱۵۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب ۲۵۵ /۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر ۱۵۱ مکل ۵-۸۸- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (موج ریکر g ۰/۱۵)۱۵۲ شکل ۵-۸۴-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (موج ریکر g ۰/۱۵)۱۵۲ شکل ۵-۸۸- تاریخچه شتاب بر روی تاج سد به همراه موج ریکر و تابع طیف دامنه فوریه۱۵۳
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب ۲۵۵ /۰در مقطع ماکزیمم سد و سطح اماک الماس هسته و فیلتر
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب ۲۵۵ /۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب g ۳۵/۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب ۵۳/۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر
شکل ۵-۸۲-کانتورهای تنش برشی پس از اعمال موج ریکر با شتاب ۲۵۵/۰در مقطع ماکزیمم سد و سطح تماس هسته و فیلتر

شکل ۵-۹۲- کانتورهای تغییرمکان قائم در مقطع ماکزیمم و طولی سد(m)
شکل ۵–۹۳- کانتورهای تغییرمکان افقی در مقطع ماکزیمم سد(m)
شکل۵–۹۴– کانتورهای تنش قائم در مقطع ماکزیمم سد (N/m²))
شکل۵–۹۵– کانتورهای تنش افقی در مقطع ماکزیمم سد (N/m²)
شکل ۵–۹۶-کانتورهای تنش برشی در مقطع ماکزیمم سد (N/m ²)
شکل۵-۹۷-کانتورهای تغییرشکل افقی پس از اعمال موج ریکر با شتابg ۳۵/۰ در ۱) بدنه سد
۲) مقطع ماکزیمم
شکل ۵–۹۸-کانتورهای تغییرشکل افقی در جهت y در مقطع طولی سد پس از اعمال موج ریکر با
شتابع ۲۵/۳۵
شکل ۵–۹۹-کانتورهای تغییرشکل قائم در مقطع ماکزیمم سد پس از اعمال موج ریکر با
شتابع ۲۵٪ ۰
شکل ۵–۱۰۰-کانتورهای تنش برشی پس از اعمال موج ریکر با شتابg ۰/۳۵ در مقطع ماکزیمم سد و
سطح تماس هسته و فیلتر
شکل ۵–۱۰۱- تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (موج ریکر g ۰/۳۵)
شکل ۵–۱۰۲-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (موج ریکرg ۰/۳۵)۱۶۲
شکل ۵–۱۰۳- تاریخچه شتاب بر روی تاج سد به همراه موج ریکر و تابع بزرگنمایی فوریه آن
شکل ۵–۱۰۴– تغییرات شتاب حداکثر نسبت به ارتفاع در مقطع ماکزیمم سد (طیف منجیل g ۱۶۴۰.(۰/۳۵)
شکل ۵–۱۰۵-تغییرات شتاب حداکثر بر روی تاج در امتداد محور طولی سد (طیف منجیل g ۶/۰)۱۶۴
شکل ۵-۱۰۶-تاریخچه شتاب بر روی تاج سد و تابع طیف فوریه آن (طیف منجیل g ۰/۳۵)
شکل ۵–۱۰۷– حداکثر تغییرمکان قائم و افقی نسبت به L/H
شکل ۵–۱۰۷– حداکثر تغییرمکان قائم و افقی نسبت به L/H

شکل ۵–۱۰۹- تغییرات شتاب حداکثر در طول تاج سد در دره های عریض تحت تاثیر موج ریکر۱۷۰	
شکل ۵–۱۱۰- تغییرات شتاب حداکثر در مقطع میانی سد در دره های عریض در آنالیز دوبعدی و سه بعدی	
تحت تاثیر زلزله منجیل	
شکل ۵–۱۱۱- تغییرات شتاب حداکثر در طول تاج سد در دره های عریض تحت تاثیر زلزله منجیل ۱۷۲۰۰۰۰	
شکل ۵–۱۱۲– تغییرات شتاب حداکثر در مقطع میانی سد در دره های تنگ در آنالیز دوبعدی و سه بعدی	
تحت تاثیر موج ریکر	
شکل ۵-۱۱۳- تغییرات شتاب حداکثر در طول تاج سد در دره های تنگ تحت تاثیر موج ریکر۱۷۴	
شکل ۵–۱۱۴– تغییرات شتاب حداکثر در مقطع میانی سد در دره های تنگ در آنالیز دوبعدی و سه بعدی	
تحت تاثیر زلزله منجیل	
شکل ۵–۱۱۵- تغییرات شتاب حداکثر در طول تاج سد در دره های تنگ تحت تاثیر موج ریکر۱۷۶	
شکل ۵–۱۱۶- تغییرات بزرگنمایی در تاج سد بر حسب ضریب شکل دره تحت اثر زلزله ریکر۱۷۷	
شکل ۵–۱۱۷- تغییرات بزرگنمایی در تاج سد بر حسب ضریب شکل دره تحت اثر زلزله منجیل۱۷۷	

فهرست جداول

ينوان	2
صل دوم:	فر
جدول ۲-۱ راههای ممکن که منجر به شکست سدهای خاکی در زلزله می گردد (Seed, 1979) ۱۴	
جدول ۲-۲- حد بالای مقادیر جابهجائی پیشبینی شده برای خاکریزهائی که در معرض زلزلهای با بزرگی	
۶/۵ قرار گیرند (مقدار کم یا عدم کاهش مقاومت در اثر زلزله)۲۸	
جدول ۲–۳– حد بالای مقادیر جابهجائی پیشبینی شده برای خاکریزهائی که در معرض زلزلهای با بزرگی	
۸/۲۵ قرار گیرند (مقدار کم یا عدم کاهش مقاومت در اثر زلزله)	
صل سوم:	فر
جدول ۳-۱- عبارات تحلیلی برخی مدلهای دوبعدی و سه بعدی سد خاکی	
۴۳(Gazetas & Dakolus, 1992)	
صل چهارم:	ف
جدول۴–۱ مقایسه روش مشتق ضمنی و مشتق صریح۶۱	
جدول ۴-۲- تغییر مکان نقاط راس قطعات مختلف یک میله با ساخت مرحلهای	
جدول ۴–۳- مقایسه دستی و کامپیوتری مقادیر بدست آمده برای نشست نقاط واقع در راس قطعات مختلف	
میله (برحسب 10 ⁻⁵ cm)	
جدول۴-۳-خصوصیات مصالح مورد استفاده در مدل	
فصل پنجم:	
جدول ۵-۱- برخی گسلهای موجود و مهم در گستره مورد بررسی	
جدول ۵-۲-سطوح مختلف شتاب مبنای طراحی برای سد مخزنی البرز۹۴	
جدول ۵-۳- پارامترهای ژئوتکنیکی مصالح	

جدول ۵-۴- سرعت موج برشی مصالح
جدول ۵-۵- خلاصه ای از نتایج آنالیزهای استاتیکی در حالت دوبعدی و سه بعدی
جدول ۵-۶- خلاصه ای از نتایج آنالیز دینامیکی در دره های عریض در حالت دوبعدی و سه بعدی تحت
تاثیر موج ریکر
جدول ۵-۷- خلاصه ای از نتایج آنالیز دینامیکی در دره های عریض در حالت دوبعدی و سه بعدی تحت
تاثیر زلزله منجیل
جدول ۵-۸- خلاصه ای از نتایج آنالیز دینامیکی در دره های تنگ در حالت دوبعدی و سه بعدی تحت تاثیر
موج ریکر
جدول ۵–۹- خلاصه ای از نتایج انالیز دینامیکی در دره های عمیق در حالت دوبعدی و سه بعدی تحت