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Abstract
Inverse Semigroup Actions and C*-crossed

Products by Partial Actions

by
Saied Salehi Najaf Abadi

Recently the notion of a partial crossed product of a C*-algebra by the
group of integers was defined by R. Exel in [12]. Roughly, the automor-
phism used in the definition of a crossed product of a C*-algebra A by
the group of integers was replaced by an isomorphism between two closed
two-sided ideals of A and was called a partial automorphism. The the-
ory of partial crossed products also can be generalized to discrete groups
defined by McClanahan [26].

Our development is based upon another generalization of group ac-
tions. In the definition of partial actions we also use the inverse semi-
group of partial automorphisms instead of the automorphism group of
the C~-algebra.

There is an intimate connection between partial crossed products and
crossed products by inverse semigroup actions. Our main goal in this
thesis is to explore this connection, showing that. every partial crossed
product is isomorphic to a crossed product by an inverse semigroup ac-
tion. In particular, with a partial action a of a discrete group G on a
C~-algebra A, we can define an inverse semigroup S and an action ;3 of §
as in Theorem 4.4.2. such that the crossed products A x, G and A x5S

are isomorphic.
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Chapter 1

Elementary Properties of

C*-algebras

In this chapter we discuss an important class of Banach algebras, termed
C=-algebras. Section 1 is concerned with basic properties of C*-algebras.
we investigate some Examples of C'*-algebras and also some Banach al-
gebras which are not C™-algebras. States and pure states are study in
section 2.

Section 3 is devoted to the notion of approximate identity, an special
net of self-adjoint elements of a C™-algebra. The main goal of section 4 is
to introduce the connection between a C™-algebra A and algebras C'(X)
or B(H). At the end of this section we define some representations, such
as universal, non-degenerate and faithful representations.

Typical references that we use them in this chapter. are [24] and 21}




1.1 Cr*-algebras

This section deals with some definitions and basic properties of C*-
algebras. A C*-algebra, is a Banach algebra with an involution that
satisfies the C*-condition. An interesting Example of C*-algebra is the
matrix algebra. At the end of this section we list some important ele-

ments of a C'*-algebra.

1.1.1 Preliminaries on C*-algebra

Definition 1.1.1 An algebra over IF' is a vector space A over [F' that

also has multiplication defined on it that makes A into a ring such that:
a(ab) = (aa)b = a(abd),
for all a,bin A and a in [F.

A subspace B of A is called subalgebra of A if it 1s an algebra with

multiplication defined on A.

Definition 1.1.2 By an involution on an algebra A. we mean a map-
ping v — z~, from A into A such that:

) (ax+y) =ac" 4y

ii) (zy)” =y a™

i) (z*)* =z,
whenever z,y are in A, o is in €C and @ denotes the complex conjugation

of a.

A subset B of A is said to be self-adjoint if it contains the adjoint
of each of its members. A self-adjoint subalgebra of A is termed a *-

subalgebra. An algebra with an involution is called *-algebra.
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Definition 1.1.3 If X is a vector space over [F, a normon X is a
function P : X — [0,00) having the properties:

1) P(x+y) < P(z)+ P(y) for all z,y in X;

1) P(az) = |a|P(z) for all a in [F and z in X;

i) z = 0if P(z)=0.

Usually a norm is denoted by ||.||. Note that if P has properties (i) and

(ii), it’s called a seminorm on X.

Definition 1.1.4 A normed space is a pair (X, |.||) where X is a
vector space and ||.|| is a norm on X. A Banach space is a normed space

that is complete with respect to the metric defined by the norm.

The following Theorem gives necessary conditions for extension of a

function.

Theorem 1.1.5 (Eztension by continuity). Let X be a normed space,
Y be a Banach space. Xy be a dense linear subspace of X and Ty a
bounded linear operator from Xy to Y. Then Ty has a unique ertension

to a bounded linear operator T from X to'Y, moreover |T|| = || To]|.
Proof: See 7L of [34].

Definition 1.1.6 A Banach algebra is an algebra 4 over [F that has

a norm |.|| relative to which A is a Banach space and such that:
labll < {lalllib],
for all a.bin A.

If a Banach algebra A has an identity e, i.e., ae = €a = a for all a in A,

then it is assumed that |le]| = 1.




The content of the next Proposition is that if A does not have an
identity it is possible to find a Banach algebra A;, that contains A, that

has an identity, and is such that
dim(AJA;) =1
Proposition 1.1.7 If A is a Banach algebra without an identity, let
A = AxTF

Define algebraic operations on A, by:
1) (a,a) + (b,8) = (a + b,a + B);
ii) B(a, @) = (Ba, Ba);
iii) (a,0)(b, B) = (ab+ ab + fa, aff),
and norm by:
I(a. )|l = llafl + |al.
Then A, with this norm is a Banach algebra with identity (0.1) and

a — (a,0) is an isometric isomorphism of A into A;.

Proof: See Proposition 1.1.3 of [33].

Now we are going to define a C"-algebra.

Definition 1.1.8 A C~-algebra is a complex Banach =-algebra A that

satisfies the condition:
la“a| = [la]* (a € A).

The above condition is called C*-condition.
Some times a C™-algebra is denoted by (A4, ||.||, *) whenever * and |].||

are the involution and norm on A which make it to a C~-algebra.




Proposition 1.1.9 If A is a C*-algebra and a is in A, then lla*|| =

lal} and |la*all = [|laa”].

Proof: Note that ||a]|? = |la*a|| < |la*||llal|, so [la|]| < [la7||. Since

a = a™, substituting a* for a in this inequality gives lla*|| < |la]|. Also
la=all = lla||* = [la*||* = la™a”|| = ||aa”]|.

The following Proposition is needed in the definition of left regular

representation.

Proposition 1.1.10 If A is a C™-algebra and a is in A, then:
all = sup{[laz| : = € A, ||z]| < 1}.

Proof: Let o = sup{|laz| : ¢ € A,||z]| < 1}. Then |az|| < |lallf|z]| for
any x in A, hence a < |la||. If z = a”/||af}, then [lz]| = 1. For such z,

laz]| = fla]], and s0 @ = [l

Definition 1.1.11 For @ in A, define L, : A — A by L, (1) = az.

By preceding Proposition, L, is in B(A4) and |

L,

=|lall. fp: A —
B(A) is defined by p(a) = L, then p is a homomorphism and an isometry.
This is. 4 is isometrically isomorphic to a subalgebra of B(.4). The map

p is called the left regular representation of A.

1.1.2 Examples of C*-algebra

Here we will give some Examples of C'*-algebras.

Example 1.1.12 The simplest Ezample of a C™-algebra is C. In this

algebra we have a* =@ and |ja|| = |a] for all a in C.




Example 1.1.13 The set of all n-tuples with complez coordinate, C”,
is a C*-algebra. Norm, multiplication and involution are defined as fol-

low:
ll(c1s 2y ovey )|l = max{|ci| 7 =1,2,...,n},
(c1,C25 -y Ca)(Cr’y €2y en €)= (c101 s c262 s -y ey,
(c1,€25e5¢n)" = (€1,C2y--,Cn)-

It is not difficult to show that C" is a Banach *-algebra with respect to

the above norm. We only prove the C*-condition:

(1, sy Ca)Crs Cayeenscn)’ll = (1T, €282, -, enCa)|
= max{l¢&]:1=1,2,...,n}
= max{|¢|*:i=1,2,...,n}

= (max{|¢;]:i=1,2,...,n})

The set of matrix algebras play an important role in the theory of

finite dimensional C*-algebras. For more on this connection see Theorems

(2.2.13) and (2.2.14).

Example 1.1.14 (Matriz algebra). Given an integer n > 1 and the
Hilbert space C", we identify the algebra B(C") with the algebra M, (C)
of n-by-n complex matrices. Thus M, (C) is a C™ — algebra of operator

on C", the involution is given by:

N x

(a)i; =1a;;
for all a in M,(C) and i,j in {1,2,....n}, and the norm is given by:

lal| = sup{lla(z)|: 2€C", |zl <1} = NP
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where fiy, la, . . ., un denote the eigenvalues of a”a.
For see ||a*a = ||a]|?, we note that, if (A)nxn is a matriz, A* is an

eigenvalue of A% if A is an eigenvalue of A. Then

= = { s = 2 = ;= 2,
la*all =, / max A; ,/@a;;uj max llal”,

where \; and p; are eigenvalues of a*aa*a = (a*a)? and a*a, respectivel
Rl ; s

forl <i<n.

Perhaps one think, there is another norm on M, (C) that makes 1t to

a C~-algebra. but the next Lemma shows that it is not true.

Lemma 1.1.15 On the involutive algebra M,(C), the only norm,

.|, such that |laa*|| = ||a||* for all a in M,(C), is the above norm.

Proof: See Lemma 2.6 of [21].

It is not deficult to see that. if (A4.]|.1l1,*), (4, ||.]|2,*) are C*-algebras
then [l = [1]2.
Now let us show that every multiplier algebra is a C™-algebra. For this

we must define first, a double centralizer for a C~-algebra.

Definition 1.1.16 A double centralizer for a C™-algebra A is a pair

(L. R) of bounded linear maps on A. such that for all a,bin A
L{ab) = L(a}b. R(ab) = aR(b) and Ri{ajb = al(b).

Example 1.1.17 (multiplier algebra) If 4 is a C-algebra. the set
M(A) of all double centralizers of A is a C-algebra with the following

structures:

a(Ly, Ry) + (Lo, Ry) = (aLy + Lo, Ry + Rz),
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