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ABSTRACT

REFLEXIVITY AND SUPERCYCLICITY OF SOME

CLASSES OF LINEAR OPERATORS

BY

MASOUMEH FAGHIH AHMADI

In the present thesis, by H we mean a separable infinite dimensional com-

plex Hilbert space, and B(H) denotes the algebra of all bounded linear oper-

ators on H.

The thesis is organized as follows:

In the first part, we consider the class of m-isometric operators, which are,

in some sense, a generalization of isometries. After observing some easy prop-

erties of m-isometric operators, we shall characterize all 3-isometric unilateral

weighted shift operators, which are not 2-isometric, in terms of their weight

sequences. One of the most interesting results is the identification of the be-

havior of orbits of m-isometries. We will prove that the orbit of every vector

under an m-isometric operator is eventually increasing. This leads us to some

nice consequences,some of which are as follows:

(1) power bounded m-isometries are isometries;

(2) an m-isometric operator is never supercyclic.

We also consider the subject of weak hypercyclicity of these operators, and

prove that no m-isometry is weakly hypercyclic.
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The second part of the thesis is devoted to reflexivity of operators. We are

going to prove the reflexivity of a hyponormal operator T whose spectrum is

{z : |z| ≤ r(T )}, where r(T ) denotes the spectral radius of T . Another result

is to prove the reflexivity of contractions whose spectrum fills the closed unit

disc. We also derive an easy proof for a result of Foias and Pearcy which states

that every unilateral or bilateral weighted shift T with ‖T‖ = r(T ) is reflexive.

Afterwards, we will show that all non-negative powers of an injective unilateral

weighted shift operator such that the point spectrum of whose adjoint has a

nonzero element, are reflexive. Furthermore, all integer powers of an invertible

bilateral weighted shift operator are reflexive. At last, we will prove that every

positive integer power of a unilateral weighted shift that is an m-isometry, is

reflexive.
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Chapter 1

INTRODUCTION



1 INTRODUCTION

One of the most intractable unsolved problems in the theory of Hilbert

space operators is the invariant subspace problem. This problem deals with

the question of whether every operator on a separable infinite dimensional

Hilbert space has a nontrivial (closed) invariant subspace; that is, an invariant

subspace which is neither (0) nor the whole space. The Banach space analogue

has been answered negatively by P. Enflo [27], C. Read [57 ,58 ], and B.

Beauzamy [8]. Some authors are interested in closed invariant subsets other

than {0} and the whole space which is a stronger condition on operators.

However, the Hilbert space case is still unsolved, although many deep and

innovative techniques have been developed to handle special classes of opera-

tors. See, for instance, [56].

Some branches in operator theory has been motivated from this problem.

One is various kinds of cyclicity, like hypercyclicity and supercyclicity. In

Chapter 2, we will be concerned with discussing these concepts for a special

class of operators, called m-isometric operators. Another is reflexivity of op-

erators which is the discussion of Chapter 3. Some parts in the scope of our

investigation are appeared in [29, 30, 31]. As we will see, if each nonzero vector

in a Hilbert space H is hypercyclic for an operator T , then T has no nontrivial

closed invariant subset. In contrast, reflexive operators have numerous invari-

ant subspaces.

In the present chapter, we shall state some basic definitions and preliminary

results which will be used in the other parts of this thesis. Throughout this
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research, H denotes a separable infinite dimensional complex Hilbert space,

unless specifically stated, and B(H) referres to the algebra of all bounded

linear operators on H. By an operator, we mean a bounded linear operator.

Also, some familiarity with elementary facts about operator theory will be

assumed.

1.1 Some Basic Facts about Operators

Let T be an operator on a Hilbert space H. The spectrum of T , denoted by

σ(T ), consists of all complex numbers λ such that T − λI is not boundedly

invertible. If T ∗ is the adjoint of an operator T , it is well-known that

σ(T ∗) = σ(T )∗ := {λ ∈ C : λ ∈ σ(T )}.

The spectral radius of T is defined by r(T ) = sup{|λ| : λ ∈ σ(T )}, which

satisfies

r(T ) = lim
n−→∞

‖T n‖
1
n ≤ ‖T‖.

The point spectrum and the approximate point spectrum of an operator T

are parts of the spectrum. They are denoted by σp(T ) and σap(T ), respectively.

The point spectrum of T is, by definition, the set of all scalars λ such that

ker (T − λ) 6= (0). Furthermore, σap(T ) consists of all λ ∈ C for which there

is a sequence {hn}n in H such that ‖hn‖ = 1 for all n and ‖(T − λ)hn‖ −→ 0

as n −→∞.

Recall that an operator T is bounded below, if there is a constant c > 0

such that ‖Th‖ ≥ c‖h‖, for all h in H.

Proposition 1.1.1 If T is an operator on H and λ ∈ σ(T ), then the fol-

lowing assertions are equivalent.
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(a) λ is not in σap(T ).

(b) The operator T − λ is bounded below.

(c) ran (T − λ) is closed and ker (T − λ) = (0).

Proof. See [19, Proposition 6.4 (VII)]. �

Example 1.1.2 If T is a compact operator on an infinite dimensional Hilbert

space H, then 0 ∈ σ(T ) and either σ(T ) is finite or consists of a sequence con-

verging to zero.

Note that if T is a compact operator then σ(T )\{0} ⊆ σp(T ) [19, Theorem

7.1 (VII)].

To continue, we recall that if X1 and X2 are Banach spaces, then X1⊕1 X2

denotes the Banach space of all x = h1 ⊕ h2 with norm defined by ‖x‖ =

‖h1‖+ ‖h2‖.

The next result is an application of the closed graph theorem which is

sometimes used to prove certain linear transformations are bounded. Recall

that by the closed graph theorem, if the graph of a linear transformation is

closed, then it is continuous.

Proposition 1.1.3 If H1 and H2 are Hilbert spaces and T : H1 −→ H2 is a

linear transformation, then the graph of T , i.e., {h⊕Th ∈ H1⊕1H2 : h ∈ H1}

is closed if and only if whenever hn −→ 0 and Thn −→ k, it must be that

k = 0.

Proof. It is straightforward. �

We now turn to another result which is useful in the subsequent chapters.

Theorem 1.1.4 Suppose that T ∈ B(H). Then ran T is closed if and only

if ran T ∗ is closed.
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Proof. See [19, Theorem 1.10 (VI)]. �

In many situations, we deal with special subspaces of a Hilbert space, which

are introduced in the next definition.

Definition 1.1.5 Let T be an operator in B(H). A closed subspace M of

H is called an invariant subspace of T , if TM ⊆ M. Also, M is called a

reducing subspace, if it is invariant under both T and T ∗.

This section concludes with a glance at the Riesz functional calculus for an

operator in B(H). For further discussion on this subject, we refer to [19].

Definition 1.1.6 Let T be in B(H). By Hol(T ) we mean the set of all

complex valued functions that are analytic in a neighborhood of σ(T ).

Theorem 1.1.7 Suppose that T ∈ B(H). Then there exists a unique algebra

homomorphism τ : Hol(T ) −→ B(H) with the following properties.

(a) If f(z) ≡ 1, then τ(f) = I.

(b) If f(z) = z for all z, then τ(f) = T .

(c) If f, f1, f2, . . . are analytic functions on an open set G such that σ(T ) ⊆ G

and fn(z) −→ f(z) uniformly on compact subsets of G, then τ(fn) −→ τ(f).

Proof. See [19, Proposition 4.8 (VII)]. �

Notation. The operator τ(f), introduced in the above theorem is repre-

sented by f(T ).

1.2 Strong and Weak Operator Topologies on

B(H)

In this section, we will make a brief study of various kinds of topologies on

B(H). Note that since B(H) is a normed space, it admits the norm topology.
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But there are other topologies on B(H) which results in serious studies of this

space. We, especially, make a use of them in the last chapter.

Definition 1.2.1 The strong operator topology (SOT) on B(H) is the topol-

ogy defined by the collection of seminorms {ph : h ∈ H} where ph : B(H) −→

C is given by ph(T ) = ‖Th‖.

According to this definition, for an operator T0 ∈ B(H), the family of sets

of the form

U(T0 : h; ε) = {T ∈ B(H) : ‖(T − T0)h‖ < ε},

where ε > 0 and h is in H, constitutes a subbase of open neighborhoods of T0

in SOT.

Definition 1.2.2 The weak operator topology (WOT) on B(H) is the topol-

ogy defined by the collection of seminorms {ph,k : h, k ∈ H} where ph,k :

B(H) −→ C is given by ph,k(T ) = |〈Th, k〉|.

In this topology, an operator T0 in B(H) has a subbase of neighborhoods

consisting of all sets of the type

U(T0 : h, k; ε) = {T ∈ B(H) : |〈(T − T0)h, k〉| < ε},

where ε > 0 and h, k are in H.

The following proposition illustrates the convergence in SOT and WOT on

B(H).

Proposition 1.2.3 Let {Ti}i be a net in B(H).

(a) Ti −→ T (SOT) if and only if ‖Tih− Th‖ −→ 0 for every h in H.

(b) Ti −→ T (WOT) if and only if 〈Tih, k〉 −→ 〈Th, k〉 for every h, k in H.
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Proof. See [19]. �

The next theorem is crucial when studying convex subsets of B(H).

Theorem 1.2.4 The weak operator closure of a convex subset of B(H) co-

incides with its strong operator closure.

Proof. See [45, Theorem 5.1.2]. �

1.3 Weighted Shift Operators

Weighted shift operators provide a good source of plenty of examples in many

branches of operator theory. To get an explicit description of them, we begin

with the following definitions.

Definition 1.3.1 A (not necessarily bounded) operator T on H is called

a unilateral weighted shift, if there is an orthonormal basis {en}∞n=0 and a

sequence of scalars {wn}∞n=0 such that Ten = wnen+1, for all n ≥ 0.

Definition 1.3.2 A (not necessarily bounded) operator T on H is called a

bilateral weighted shift, if there is an orthonormal basis {en : n ∈ Z} and a

bilateral sequence {wn : n ∈ Z} such that Ten = wnen+1, for all n ∈ Z.

The sequence {wn}n is called the weight sequence of T . Note that a

weighted shift operator is bounded if and only if its weight sequence forms

a bounded sequence.

We remark that it will always suffice to assume that the weight sequence

consists of nonnegative scalars, due to the following result.

Proposition 1.3.3 If T is a unilateral (resp. bilateral) weighted shift oper-

ator with weight sequence {wn}n, then T is unitarily equivalent to a unilateral

(resp. bilateral) weighted shift operator with a nonnegative weight sequence.
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Proof. See [21, Page 53]. �

Theorem 1.3.4 If T is a bounded weighted shift operator then

‖T n‖ = sup
k
|wkwk+1 . . . wk+n−1|, n = 1, 2, · · · .

Proof. The result clearly follows from the fact that

T nek = (wkwk+1 . . . wk+n−1)ek+n,

for every k. �

Theorem 1.3.5 If T is a bounded bilateral weighted shift operator then

T ∗en = wn−1en−1,

for all n. Also, if T ∈ B(H) is a unilateral weighted shift operator, then

T ∗en =

 wn−1en−1 (n ≥ 1),

0 (n = 0).

Proof. See [67, Page 52]. �

Recall that an operator T is said to be power bounded, if sup{‖T n‖ : n =

0, 1, . . .} < ∞.

Theorem 1.3.6 Every power bounded weighted shift operator is similar to

a contraction.

Proof. See [67, Page 55]. �

Recall that an operator T is called hyponormal, if T ∗T − TT ∗ is a positive

operator; or equivalently, if ‖Th‖ ≥ ‖T ∗h‖, for every vector h in H. For a

hyponormal operator T , we always have ‖T‖ = r(T ) (see [21]).
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Theorem 1.3.7 A weighted shift operator is hyponormal if and only if its

weight sequence is increasing.

Proof. See [21, Proposition 6.6] or [67, Page 83]. �

Shield’s paper [67] is a good reference on the spectrum of weighted shift

operators.

Theorem 1.3.8 If T is a unilateral weighted shift operator, then

σ(T ) = {z : |z| ≤ r(T )}.

Theorem 1.3.9 Suppose that T is a bilateral weighted shift operator. Then

the following assertions are true.

(a) If T is invertible, then

σ(T ) = {z : r(T−1)−1 ≤ |z| ≤ r(T )}.

(b) If T is not invertible, then

σ(T ) = {z : |z| ≤ r(T )}.

1.4 Another View of Weighted Shifts

In this section, we describe another way of introducing injective weighted shift

operators.

Recall that a (not necessarily bounded) operator T on H is said to shift

(forward) an orthogonal basis {fn}n, if Tfn = fn+1, for every n. Let {en}n be

an orthonormal basis for H and T be a weighted shift operator with positive

weight sequence {wn}n. Then T shifts the orthogonal basis {fn}n defined by
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