IN THE NAME OF GOD

NEW APPLICATIONS OF TUNGSTEN HEXACHLORIDE, MOLYBDENUM PENTACHLORIDE, ZIRCONIUM TETRACHLORIDE AND LITHIUM BROMIDE IN ORGANIC SYNTHESIS

> BY Babak Karimi

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.)

IN ORGANIC CHEMISTRY SHIRAZ UNIVERSITY SHIRAZ, IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE AS: EXCELLENT

H. Firouzabadi, Ph.D., Prof. of Chemistry (Chairman)

N. Iranpoor, Ph.D., Prof. of Chemistry

A. Banihashemi, Ph.D., Prof. of Chemistry

B. Tamami, Ph.D., Prof. of Chemistry

A. Shafiee, Ph.D., Prof. of Chemistry, School of Pharmacy, Tehran University

Mohammad R. Saidi, Ph.D., Prof of Chemistry, Sharif University of Technology

To the Memory of:

Khosrow

(My Honorable Martyr Brother)

ACKNOWLEDGMENT

I heartily wish to discharge a pleasant duty and to acknowledge the benefit of constructive suggestions from and valuable discussions with my major supervisor, Professor Habib Firouzabadi that I received.

I also would like to express my gratitude to Professor Nasser Iranpoor for his friendly advises throughout my education.

My personal thanks go to Professor Abbass Shafiee and Professor Mohammad R. Saidi, who accept to read the thesis and for their constructive suggestions.

I also appreciate honorable member of thesis committee, especially Professor Bahman Tamami, for their careful reading and correcting the manuscript.

Finally, my gratitude also is due to my family, especially my parents and my wife for their patience and encouragement during my education.

ABSTRACT

New Applications of Tungsten Hexachloride, Molybdenum Pentachloride, Zirconium Tetrachloride, and Lithium Bromide in Organic Synthesis

BY

Babak Karimi

In this study, we have presented that tungsten hexachloride (WCl₆) is a versatile and multi purpose reagent that can be utilized as either an oxophilic reagent or a Lewis acid in a wide variety of functional group transformations.

Deoxygenation of various types of sulfoxides and also reductive coupling of different sulfonyl chlorides are efficiently performed by means of low valent tungsten species derived by *in situ* reaction of WCl₆ with NaI or Zn in dry CH₃CN or THF.

Protection of different types of carbonyl compounds as diethyl acetals, 1,3-dioxanes, 1,3-dithiolanes and 1,3-dithianes are effectively catalyzed by WCl₆.

Deprotection of masked functional groups is of especial practical importance in organic syntheses. Along this line, we have shown that acetals, thioacetals and oximes are converted to the corresponding carbonyl compounds by using WCl₆ in dry CH₂Cl₂ or CH₃CN WCl₆/DMSO in dry CH₂Cl₂, and WCl₆/Zn in dry CH₃CN, respectively, in excellent yields.

An interesting feature of this study is that, WCl₆ in the presence of DMSO promotes facile and efficient one-pot ring expansion-

chlorination reactions of 1,3-dithiolanes and 1,3-dithianes derived from the corresponding substituted acetophenones in dry CH₂Cl₂. Chemoselective and efficient ring enlargement reaction of 1,3-dithiolanes and 1,3-dithianes is also achieved by this method in dry CH₃CN. To the best of our knowledge, at the present time, no reports are available for these transformations in the literature.

These encouraging results prompted us to extend our studies to other oxophilic metal chlorides, namely, molybdenum pentachloride (MoCl₅) and zirconium tetrachloride (ZrCl₄). Our findings show that they also act as effective catalysts for acetalization, transacetalization, thioacetalization and transthioacetalization reactions. MoCl₅ shows very good ability for deprotection of acetals and dithioacetals and one-pot ring expansion-chlorination of 1,3dithiolanes and 1,3-dithianes.

Finally, an exceptional chemoselective and efficient dithioacetalization of α,β -unsaturated and aromatic aldehydes in the presence of the other carbonyl compounds and acetals under solvent-free and neutral reaction conditions with lithium bromide (LiBr) as catalyst is also introduced.

TABLE OF CONTENT

1.10. The Objective of This Study33
CHAPTER II: EXPERIMENTAL PART35
2.1. General35
2.2. Procedures for Drying of Solvents35
2.2.1. General Procedure for Drying Acetonitrile
(CH ₃ CN)35
2.2.2. General Procedure for Drying Tetrahydrofuran
(THF)36
2.2.3. General Procedure for Drying Dichloromethane
(CH ₂ Cl ₂)36
2.3. General Procedure for Deoxygenation of Sulfoxides
to Thioethers with WCl ₆ -NaI System36
2.3.1. Deoxygenation of Diphenyl Sulfoxide to
Diphenyl Sulfide with WCl ₆ -NaI System as a Typical
Procedure
2.4. General Procedure for Deoxygenation of Sulfoxides
to Thioethers with WCl ₆ -Zn System in Dry
Tetrahydrofuran37
2.4.1. Deoxygenation of Dibenzyl Sulfoxide to
Dibenzyl Sulfide with WCl ₆ -Zn System in Dry
Tetrahydrofuran as a Typical Procedure38
2.5. General Procedure for Reductive Dimerization of
Sulfonyl Chlorides to Disulfides with WCl ₆ -NaI
System
2.5.1. Reductive dimerization of 2-
Nanhthalenesulfonyl Chloride to 22'-nanhthyl

Disulfide with WCl ₆ -NaI System as a Typical
Procedure39
2.5.2. Isolation of Reaction Intermediate Phenyl
Benzenethiosulfonate in the Reductive Dimerization
of Bezenesulfonyl Chloride with WCl ₆ /Nal
System40
2.6. General Procedure for Reductive Dimerization of
Sulfonyl Chlorides to Disulfides with WCl ₆ -Zn
System41
2.6.1. Reductive Dimerization of Benzenesulfonyl
Chloride to Diphenyl Disulfide with WCl6-Zn System
as a Typical Procedure41
2.7. General Procedure for Dithioacetalization of
Carbonyl Compounds and Transdithioacetalization of
Acetals Catalyzed with Tungsten Hexachloride in Dry
Dichloromethane42
2.7.1. Dithioacetalization of Benzaldehyde to 2-
Phenyl-1,3-dithiolane Catalyzed with Tungsten
Hexachloride as a Typical Procedure42
2.7.2. Transdithioacetalization of 2-(4-Chlorophenyl)-
2-methyl-1,3-dioxolane to 2-(4-chlorophenyl)-2-
methyl-1,3-dithiolane Catalyzad with Tungsten
Hexachloride as a Typical Procedure43
2.8. General Procedure for Acetalization of Carbonyl
Compounds to Diethyl- Acetals Catalyzed with Tungsten
Hexachloride in the Presence of Triethyl Ortho-
formate44

2.8.1. Acetalization of Benzaldehyde to Benzaldehyde
Diethyl Acetal Catalyzed with Tungsten Hexachloride
in the Presence of Triethyl Orthoformate under
Solvent-Free Conditions as a Typical Procedure for
Diethyl-Acetalization of Aldehydes44
2.8.2. Acetalization of Acetophenone to
Acetophenone Diethyl Acetal Catalyzed with
Tungsten Hexachloride in the Presence of Triethyl
Orthoformate and Absolute Ethanol as a Typical
Procedure for Diethyl-Acetalization of Ketones45
2.9. General Procedure for in situ Transacetalization of
Carbonyl Compounds to 1,3-Dioxanes Catalyzed with
Tungsten Hexachloride in the Presence of Triethyl
Orthoformate46
2.9.1. Acetalization of Benzaldehyde to 2-Phenyl-1,3-
Dioxane Catalyzed with Tungsten Hexachloride in the
Presence of Triethyl Orthoformate as a Typical
Procedure for in situ Trans-1,3-dioxanation of
Carbonyl Compounds46
2.10. General Procedure for Deprotection O,O-Acetals
and O,O-Ketals to Carbonyl Compounds with
Tungsten Hexachloride in Dichloromethane or
Acetonitrile47
2.10.1. Deprotection of Benzaldehyde Dimethyl
Acetal to Benzaldehyde with Tungsten Hexachloride
in Dry Dichloromethane as a Typical Procedure for
Cleavage of O,O-Acetals48

2.10.2. Deprotection of 2-Phenyl-2-methyl-1,3
dioxalane to Acetophenone with Tungster
Hexachloride in Dry Acetonitrile as a Typica
Procedure for Cleavage of O,O-ketals48
2.11. General Procedure for Deprotection S,S-Acetals to
Carbonyl Compounds with Tungsten Hexachloride in the
Presence Dimethylsulfoxide49
2.11.1. Deprotection of 2-Phenyl-1,3-dithiane to
Benzaldehyde with Tungsten Hexachloride in Dry
Dichloromethane as a Typical Procedure for Cleavage
of S,S-Acetals49
2.12. General Procedure for Ring-Expansion-Chlorination
of 1,3-Dithiolanes and 1,3-Dithianes with Tungsten
Hexachloride in the Presence of Dimethylsulfoxide in Dry
Dichloromethane50
2.12.1. Ring-Expansion-Chlorination of 2-Phenyl-2-
methyl-1,3-dithiolane to the Corresponding
Chlorinated-Dihydro-1,4-dithiepine with Tungsten
Hexachloride in Dry Dichloromethane as a Typical
Procedure51
2.13. General Procedure for Ring-Expansion of 1,3-
Dithiolanes and 1,3-Dithianes with Tungsten Hexa-
chloride in the Presence of Dimethylsulfoxide in Dry
Acetonitrile51
2.13.1. Ring-Expansion of 2-Phenyl-2-methyl-1,3-
dithiolane to the Corresponding Dihydro-1,4-

dithiepine with Tungsten Hexachloride in Dry
Acetonitrile as a Typical Procedure52
2.14. General Procedure for Dithioacetalization of
Carbonyl Compounds and Transdithioacetalization of
Acetals Catalyzed with Molybdenum Pentachloride in
Dry Dichloromethane53
2.14.1. Dithioacetalization of Benzaldehyde to 2-
Phenyl-1,3-dithiolane Catalyzed with Molybdenum
Pentachloride as a Typical Procedure54
2.14.2. Transdithioacetalization of 2-phenyl-2-
methyl-1,3-dioxolane to 2-phenyl-2-methyl-1,3-
dithiolane Catalyzed with Molybdenum Pentachloride
as a Typical Procedure54
2.15. General Procedure for Acetalization of Carbonyl
Compounds to Diethyl Acetals Catalyzed with
Molybdenum Pentachloride in the Presence of Triethyl
Orthoformate55
2.15.1. Acetalization of Benzaldehyde to
Benzaldehyde Diethyl Acetal Catalyzed with
Molybdenum Pentachloride in the Presence of
Triethyl Orthoformate under Solvent-Free Conditions
as a Typical Procedure for Diethyl-Acetalization of
Aldehydes55
2.15.2. Acetalization of Acetophenone to
Acetophenone Diethyl Acetal Catalyzed with
Molybdenum Pentachloride in the Presence of
Triethyl Orthoformate and Absolute Ethanol as a

Typical Procedure for Diethyl-Acetalization of
Ketones56
2.16. General Procedure for in situ Transacetalization of
Carbonyl Compounds to 1,3-Dioxanes Catalyzed with
Molybdenum Pentachloride in the Presence of Triethyl
Orthoformate56
2.16.1. Acetalization of Benzaldehyde to 2-Phenyl-
1,3-Dioxane Catalyzed with Molybdenum-
Pentachloride in the Presence of Triethyl
Orthoformate as a Typical Procedure for in situ
Trans-1,3-dioxanation of Carbonyl Compounds57
2.17. General Procedure for Deprotection of O,O-Acetals
and O,O-Ketals to Carbonyl Compounds Catalyzed with
Molybdenum Pentachloride in Acetone58
2.17.1. Deprotection of Benzaldehyde Dimethyl
Acetal to Benzaldehyde Catalyzed with Molybdenum
Pentachloride in Acetone as a Typical Procedure for
Cleavage of <i>O,O</i> -Acetals and Ketals58
2.18. General Procedure for Deprotection of S,S-Acetals
to Carbonyl Compounds with Molybdenum Pentachloride
in the Presence of Dimethylsulfoxide in Dry
Dichloromethane59
2.18.1. Deprotection of 2-Phenyl-1,3-dithiane to
Benzaldehyde with Molybdenum Pentachloride in
Dry Dichloromethane as a Typical Procedure for
Cleavage of S,S-Acetals59

2.19. General Procedure for Ring-Expansion-Chlorination
of 1,3-Dithiolanes and 1,3-Dithianes with Tungsten
Hexachloride in the Presence of Dimethylsulfoxide in Dry
Dichloromethane60
2.19.1. Ring-Expansion-Chlorination of 2-Phenyl-2-
methyl-1,3-dithiolane to the Corresponding
Chlorinated-Dihydro-1,4-dithiepine with Tungsten
Hexachloride in Dry Dichloromethane as a Typical
Procedure61
2.20. General Procedure for Acetalization of Carbonyl
Compounds to Diethyl- Acetals Catalyzed with Zirconium
Tetrachloride in the Presence of Triethyl
Orthoformate61
2.20.1. Acetalization of Benzaldehyde to
Benzaldehyde Diethyl Acetal Catalyzed with
Zirconium Tetrachloride in the Presence of Triethyl
Orthoformate under Solvent-Free Conditions as a
Typical Procedure for Diethyl Acetalization of
Aldehydes62
2.20.2. Acetalization of Acetophenone to
Acetophenone Diethyl Acetal Catalyzed with
Zirconium Tetrachloride in the Presence of Triethyl
Orthoformate and Absolute Ethanol as a Typical
Procedure for Diethyl-Acetalization of
Ketones62
2.21. General Procedure for in situ Transacetalization of
Carbonyl Compounds to 1,3-Dioxanes Catalyzed with

Zircomum retractionate in the Presence of Internyl
Orthoformate63
2.21.1. Acetalization of 4-Nitrobenzaldehye to 2-(4-
Nitrophenyl)-1,3-Dioxane Catalyzed with Zirconium
Tetrachloride in the Presence of Triethyl
Orthoformate as a Typical Procedure for in situ
Trans-1,3-dioxanation of Carbonyl Compounds64
2.22. General Procedure for Transdithioacetalization of
Acetals Catalyzed with Zirconium Tetrachloride in Dry
Dichloromethane64.
2.22.2. Transdithioacetalization of Benzaldehyde
Dimethyl-acetal to 2-phenyl-2-methyl-1,3-dithiolane
Catalyzad with Zirconium Tetrachloride as a Typical
Procedure65
2.23. General Procedure for Dithioacetalization of
Aromatic- and α,β-Unsaturated Aldehydes Catalyzed
with Lithium Bromide under Neutral and Solvent-Free
Conditions66
2.23.1. Dithioacetalization of Benzaldehyde to
Benzaldehyde Diphenylthioacetal Catalyzed with
Lithium Bromide under Neutral and Solvent-Free
Conditions as a Typical Procedure66
CHAPTER III: RESULTS AND DISCUSSION68
3.1. Deoxygenation of Sulfoxides to Thioethers with
Tungsten Hexachloride (WCl ₆) in the Presence of Sodium
Iodide or Zinc Powder68

3.2. Reductive Dimerization of Sulfonyl Chlorides to the
Corresponding Symmetrical Disulfides with Tungsten
Hexachloride (WCl ₆) in the Presence of Sodium Iodide or
Zinc Powder74
3.3. Highly Efficient and Chemoselective Dithio-
acetalization of Carbonyl Compounds and Transdithio-
acetalization of Acetals Catalyzed with Tungsten
Hexachloride (WCl ₆) in Dry Dichloromethane80
3.4. Highly Chemoselective Diethyl- and in situ
Transacetalization of Carbonyl Compounds Catalyzed
with Tungsten Hexachloride (WCl ₆) under Solvent-Free
Conditions or in Dry Dichloromethane87
3.5. Highly Efficient Deprotection of Acetals and Ketals
with Tungsten Hexachloride (WCl ₆)94
3.6. The Reactions of 1,3-Dithiolanes and 1,3-Dithianes
with Tungsten Hexachloride (WCl ₆) in the Presence of
Dimethylsulfoxide (DMSO)
3.7. Reductive Deprotection of Oximes to Carbonyl
Compounds with Tungsten Hexachloride (WCl ₆) in the
Presence of Zinc Powder109
3.8. Highly Efficient and Chemoselective
Dithioacetalization of Carbonyl compounds and
Transdithioacetalization of Acetals Catalyzed with
Molybdenum Pentachloride (MoCl ₅) in Dry Dichloro-
methane111
3.9. Highly Chemoselective Diethyl- and in situ
Transacetalization of Carbonyl Compounds Catalyzed
Carbonyi Compounds Calaryzed